Skip to main content

Advertisement

Log in

Development of a planar multibody model of the human knee joint

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The aim of this work is to develop a dynamic model for the biological human knee joint. The model is formulated in the framework of multibody systems methodologies, as a system of two bodies, the femur and the tibia. For the purpose of describing the formulation, the relative motion of the tibia with respect to the femur is considered. Due to their higher stiffness compared to that of the articular cartilages, the femur and tibia are considered as rigid bodies. The femur and tibia cartilages are considered to be deformable structures with specific material characteristics. The rotation and gliding motions of the tibia relative to the femur cannot be modeled with any conventional kinematic joint, but rather in terms of the action of the knee ligaments and potential contact between the bones. Based on medical imaging techniques, the femur and tibia profiles in the sagittal plane are extracted and used to define the interface geometric conditions for contact. When a contact is detected, a continuous nonlinear contact force law is applied which calculates the contact forces developed at the interface as a function of the relative indentation between the two bodies. The four basic cruciate and collateral ligaments present in the knee are also taken into account in the proposed knee joint model, which are modeled as nonlinear elastic springs. The forces produced in the ligaments, together with the contact forces, are introduced into the system’s equations of motion as external forces. In addition, an external force is applied on the center of mass of the tibia, in order to actuate the system mimicking a normal gait motion. Finally, numerical results obtained from computational simulations are used to address the assumptions and procedures adopted in this study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jones, M.L., Hickman, J., Knox, J.: A validated finite element method study of orthodontic tooth movement in the human subject. J. Orthod. 28(1), 29–38 (2001)

    Article  Google Scholar 

  2. Koike, T., Wada, H., Kobayashi, T.: Modeling of the human middle ear using the finite-element method. J. Acoust. Soc. Am. 111(3), 1306–1317 (2002)

    Article  Google Scholar 

  3. Halloran, J.P., Petrella, A.J., Rullkoetter, P.J.: A finite element analysis of long stemmed distal tip fixation conditions in tibial knee replacement. J. Biomech. 39(1), 517–518 (2006)

    Google Scholar 

  4. Completo, A., Simões, J.A., Fonseca, F.: Explicit finite element modeling of total knee replacement mechanics. J. Biomech. 38(2), 323–331 (2005)

    Article  Google Scholar 

  5. Silva, M.P.T., Ambrósio, J.A.C.: Kinematic data consistency in the inverse dynamic analysis of biomechanical systems. Multibody Syst. Dyn. 8(2), 219–239 (2002)

    Article  MATH  Google Scholar 

  6. Teng, T.-L., Chang, F.-A., Peng, C.-P.: Analysis of human body response to vibration using multi-body dynamics method. Proc. Inst. Mech. Eng., K. J. Multibody Dyn. 220(3), 191–202 (2006)

    Google Scholar 

  7. van Lopik, D.W., Acar, M.: Analysis of human body response to vibration using multi-body dynamics method. Proc. Inst. Mech. Eng., K. J. Multibody Dyn. 221(2), 175–197 (2007)

    Google Scholar 

  8. van Lopik, D.W., Acar, M.: Dynamic verification of a multi-body computational model of human head and neck for frontal, lateral, and rear impacts. Proc. Inst. Mech. Eng., K. J. Multibody Dyn. 221(2), 199–217 (2007)

    Google Scholar 

  9. Meireles, F., Silva, M., Flores, P.: Kinematic analysis of human locomotion based on experimental data. In: Proceedings of the VipImage2007, Thematic Conference on Computational Vision and Medical Image Processing, Porto, Portugal, October 17–19 (2007), 6p

  10. Raasch, C., Zajac, F., Ma, B., Levine, S.: Muscle coordination of maximum-speed pedaling. J. Biomech. 30(6), 595–602 (1997)

    Article  Google Scholar 

  11. Andriacchi, I., Hurwitz, D.: Gait biomechanics and the evolution of total joint replacement. Gait Posture 5, 256–264 (1997)

    Article  Google Scholar 

  12. Rasmussen, J., Damsgaard, M., Christensen, S., Surma, E.: Design optimization with respect to ergonomic properties. Struct. Multidiscip. Optim. 24(2), 89–97 (2002)

    Article  Google Scholar 

  13. Ambrósio, J., Dias, J.: A road vehicle multibody model for crash simulation based on the plastic hinges approach to structural deformations. Int. J. Crashworthiness 12(1), 77–92 (2007)

    Article  Google Scholar 

  14. Flores, P., Ambrósio, J., Claro, J.C.P., Lankarani, H.M., Koshy, C.S.: Lubricated revolute joints in rigid multibody systems. Nonlinear Dyn. 56(3), 277–295 (2009)

    Article  MATH  Google Scholar 

  15. Flores, P., Ambrósio, J., Claro, J.C.P., Lankarani, H.M.: Spatial revolute joints with clearance for dynamic analysis of multibody systems. Proc. Inst. Mech. Eng., K. J. Multibody Dyn. 220(4), 257–271 (2006)

    Google Scholar 

  16. Flores, P., Ambrósio, J., Claro, J.C.P., Lankarani, H.M.: Dynamic behaviour of planar rigid multibody systems including revolute joints with clearance. Proc. Inst. Mech. Eng., K. J. Multibody Dyn. 221(2), 161–174 (2007)

    Google Scholar 

  17. Wismans, J., Veldpaus, F., Janssen, J., Huson, A., Struben, P.: A three-dimensional mathematical model of the knee-joint. J. Biomech. 13(8), 677–685 (1980)

    Article  Google Scholar 

  18. Hirokawa, S.: Biomechanics of the knee joint: a critical review. Crit. Rev. Biomed. Eng. 21(2), 79–135 (1993)

    Google Scholar 

  19. Hawkins, D., Bey, M.: Muscle and tendon force-length properties and their interactions in vivo. J. Biomech. 30(1), 63–70 (1997)

    Article  Google Scholar 

  20. Gray, H.: Anatomy of the Human Body. Bartley, Philadelphia/New York (2000)

    Google Scholar 

  21. Wismans, J.: A three-dimensional mathematical model of the human knee joint. PhD Dissertation, Eindhoven University of Technology, Eindhoven, The Netherlands (1980)

  22. Moeinzadeh, M.H.: Two and three-dimensional dynamic modeling of human joint structures with special application to the knee joint. PhD Dissertation, Ohio State University, Ohio (1981)

  23. Strasser, H.: Lehrbuch der Muskel und Gelenkmechanik. Springer, Berlin (1917)

    Google Scholar 

  24. Menschik, A.: Mechanik des kniegelenkes Teil 1. Z. Orthoped. 112, 481 (1974)

    Google Scholar 

  25. Crowninshield, R., Pope, M.H., Johnson, R.J.: An analytical model of the knee. J. Biomech. 9, 397–405 (1976)

    Article  Google Scholar 

  26. Moeinzadeh, M.H., Engin, A.E., Akkas, N.: Two-dimensional dynamic modeling of human knee joint. J. Biomech. 316(4), 253–264 (1983)

    Article  Google Scholar 

  27. Abdel-Rahman, E.M., Hefzy, M.S.: A two-dimensional dynamic anatomical model of the human knee joint. J. Biomech. Eng. 115, 357–365 (1993)

    Article  Google Scholar 

  28. Abdel-Rahman, E.M., Hefzy, M.S.: Three-dimensional dynamic behaviour of the human knee joint under impact loading. Med. Eng. Phys. 20, 276–290 (1998)

    Article  Google Scholar 

  29. Engin, A.E., Tumer, S.T.: Improved dynamic model of the human knee joint and its response to impact loading on the lower leg. J. Biomech. Eng. 115, 137–143 (1993)

    Article  Google Scholar 

  30. Blankevoort, L., Huiskes, R.: Validation of a three-dimensional model of the knee. J. Biomech. 29(7), 955–961 (1996)

    Article  Google Scholar 

  31. Mommersteeg, T.J.A., Blankevoort, L., Huiskes, R., Kooloos, J.G.M., Kauer, J.M.G., Hendriks, J.C.M.: The effect of variable relative insertion orientation of human knee bone–ligament–bone complexes on the tensile stiffness. J. Biomech. 28(6), 745–752 (1995)

    Article  Google Scholar 

  32. Piazza, S.J., Delp, S.L.: Three-dimensional dynamic simulation of total knee replacement motion during a step-up task. J. Biomech. Eng. 123, 599–606 (2001)

    Article  Google Scholar 

  33. Nikravesh, P.E.: Computer-aided Analysis of Mechanical Systems. Prentice-Hall, Englewood Cliffs (1988)

    Google Scholar 

  34. Garcia de Jalon, J., Bayo, E.: Kinematic and Dynamic Simulations of Multibody Systems. Springer, New York (1994)

    Google Scholar 

  35. Flores, P.: Dynamic analysis of mechanical systems with imperfect kinematic joints. PhD Dissertation, University of Minho, Guimarães, Portugal (2005)

  36. Flores, P., Pereira, R., Machado, M., Seabra, E.: Investigation on the Baumgarte stabilization method for dynamic analysis of constrained multibody systems. In: Ceccarelli, M. (ed.) Proceedings of EUCOMES08, the Second European Conference on Mechanism Science Cassino. Italy, September 17–19, pp. 305–312. Springer, Berlin (2008)

    Google Scholar 

  37. Shampine, L., Gordon, M.: Computer Solution of Ordinary Differential Equations: The Initial Value Problem. Freeman, San Francisco (1975)

    MATH  Google Scholar 

  38. Baumgarte, J.: Stabilization of constraints and integrals of motion in dynamical systems. Comput. Meth. Appl. Mech. Eng. 1, 1–16 (1972)

    Article  MATH  MathSciNet  Google Scholar 

  39. Marshall, J.L., Rubin, R.M.: Knee ligament injuries—a diagnostic and therapeutic approach. Orthoped. Clin. N. Am. 8(3), 641–668 (1977)

    Google Scholar 

  40. Chapra, S.C., Canale, R.P.: Numerical Methods for Engineers, 2nd edn. McGraw-Hill, New York (1989)

    Google Scholar 

  41. Boor, C.: A Practical Guide to Splines, Revised edition. Springer, Berlin (2001)

    Google Scholar 

  42. IMSL FORTRAN 90 Math Library 4.0. FORTRAN Subroutines for Mathematical Applications. Visual Numerics, Inc., Houston (1997)

    Google Scholar 

  43. Pombo, J.: A multibody methodology for railway dynamics application. PhD Dissertation, Technical University of Lisbon, Lisbon, Portugal (2004)

  44. Hertz, H.: On the contact of solids—on the contact of rigid elastic solids and on hardness. In: Miscellaneous Papers, (transl Jones, D.E., Schott, G.A.), pp. 146–183. Macmillan, London (1896)

  45. Flores, P., Ambrósio, J., Claro, J.C.P., Lankarani, H.M.: Influence of the contact-impact force model on the dynamic response of multibody systems. Proc. Inst. Mech. Eng., K. J. Multibody Dyn. 220(1), 21–34 (2006)

    Google Scholar 

  46. Lankarani, H.M., Nikravesh, P.E.: A contact force model with hysteresis damping for impact analysis of multibody systems. J. Mech. Des. 112, 369–376 (1990)

    Google Scholar 

  47. Koo, S., Andriacchi, T.P.: A comparison of the influence of global functional loads vs. local contact anatomy on articular cartilage thickness at the knee. J. Biomech. 40, 2961–2966 (2007)

    Article  Google Scholar 

  48. Butler, D.L., Grood, E.S., Noyes, F.R., Zernicke, R.F.: Biomechanics of ligaments and tendons. Exerc. Sports Sci. Rev. 6, 125–181 (1978)

    Google Scholar 

  49. Korhonen, R.K., Laasanen, M.S., Töyräs, J., Rieppo, J., Hirvonen, J., Helminen, H.J., Jurvelin, J.S.: Comparison of the equilibrium response of articular cartilage in unconfined compression, confined compression and indentation. J. Biomech. 35, 903–909 (2002)

    Article  Google Scholar 

  50. Caplan, A., Elyaderani, M., Mochizuki, Y., Wakitani, S., Goldberg, V.: Overview principles of cartilages repair and regeneration: principles of cartilage repair and regeneration. Clin. Orthop. Relat. R., 254–269 (1997)

  51. Petersen, J., Ruecker, A., von Stechow, D., Adamietz, P., Poertner, R., Rueger, J., Meenen, N.: Present and future therapies of articular cartilage defects. Eur. J. Trauma 1, 1–10 (2003)

    Article  Google Scholar 

  52. Yamaguchi, G.: Dynamic Modeling of Musculoskeletal Motion. Kluwer Academic, Dordrecht (2001)

    MATH  Google Scholar 

  53. Li, G., Lopez, O., Rubash, H.: Variability of a three-dimensional finite element model constructed using magnetic resonance images of a knee for joint contact stress analysis. J. Biomech. Eng. 123, 341–346 (2001)

    Article  MATH  Google Scholar 

  54. Donzelli, P., Spilker, R.S., Ateshian, G.A., Mow, V.C.: Contact analysis of biphasic transversely isotropic cartilage layers and correlation with tissue failure. J. Biomech. 32, 1037–1047 (1999)

    Article  Google Scholar 

  55. Tümer, S.T., Engin, A.E.: Three-body segment dynamic model of the human knee. J. Biomech. Eng. 115, 350–356 (1993)

    Article  Google Scholar 

  56. Pombo, J., Ambrósio, J.: Application of a wheel-rail contact model to railway dynamics in small radius curved tracks. Multibody Syst. Dyn. 19, 91–114 (2008)

    Article  MATH  Google Scholar 

  57. Limbert, G., Taylor, M., Middleton, J.: Three-dimensional finite element modelling of the human ACL: simulation of passive knee flexion with a stressed and stress-free ACL. J. Biomech. 37, 1723–1731 (2004)

    Article  Google Scholar 

  58. Flores, P., Ambrósio, J., Claro, J.C.P., Lankarani, H.M.: Kinematics and Dynamics of Multibody Systems with Imperfect Joints. Lecture Notes in Applied and Computational Mechanics, vol. 34. Springer, Berlin/Heidelberg (2008)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paulo Flores.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Machado, M., Flores, P., Claro, J.C.P. et al. Development of a planar multibody model of the human knee joint. Nonlinear Dyn 60, 459–478 (2010). https://doi.org/10.1007/s11071-009-9608-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-009-9608-7

Navigation