Skip to main content
Log in

Stability criteria for a class of fractional order systems

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper deals with the stability problem in LTI fractional order systems having fractional orders between 1 and 1.5. Some sufficient algebraic conditions to guarantee the BIBO stability in such systems are obtained. The obtained conditions directly depend on the coefficients of the system equations, and consequently using them is easier than the use of conditions constructed based on solving the characteristic equation of the system. Some illustrations are presented to show the applicability of the obtained conditions. For example, it is shown that these conditions may be useful in stabilization of unstable fractional order systems or in taming fractional order chaotic systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sun, H., Chen, W., Chen, Y.Q.: Variable-order fractional differential operators in anomalous diffusion modeling. Phys. A: Stat. Mech. Appl. 388, 4586–4592 (2009)

    Article  Google Scholar 

  2. Bertrand, N., Sabatier, J., Briat, O., Vinassa, J.M.: Fractional non-linear modelling of ultracapacitors. Commun. Nonlinear Sci. Numer. Simul. (2009). doi:10.1016/j.cnsns.2009.05.066. In press

    Google Scholar 

  3. Tavazoei, M.S., Haeri, M., Jafari, S., Bolouki, S., Siami, M.: Some applications of fractional calculus in suppression of chaotic oscillations. IEEE Trans. Ind. Electron. 55(11), 4098–4101 (2008)

    Article  Google Scholar 

  4. Feliu-Batlle, V., Rivas Perez, R., Sanchez Rodrigue, L.: Fractional robust control of main irrigation canals with variable dynamic parameters. Control Eng. Pract. 15, 673–686 (2007)

    Article  Google Scholar 

  5. Matignon, D.: Stability results for fractional differential equations with applications to control processing. In: Computational Engineering in Systems and Application Multi-conference, vol. 2, IMACS, IEEE-SMC Proceedings, pp. 963–968, Lille, France (July 1996)

  6. Matignon, D.: Stability properties for generalized fractional differential systems. ESAIM: Proc. 5, 145–158 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  7. Sabatier, J., Moze, M., Farges, C.: On stability of fractional order systems. In: Third IFAC Workshop on Fractional Differentiation and its Applications (FDA’08), Ankara, Turkey (November 2008)

  8. Li, C., Zhao, Z.: Asymptotical stability analysis of linear fractional differential systems. J. Shanghai Univ. (Engl. Ed). 13(3), 197–206 (2009)

    Article  Google Scholar 

  9. Deng, W., Li, C., Guo, Q.: Analysis of fractional differential equations with multi-orders. Fractals 15, 173–182 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  10. Bonnet, C., Partington, J.R.: Coprime factorizations and stability of fractional differential systems. Syst. Control Lett. 41, 167–174 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  11. Chen, Y.Q., Moore, K.L.: Analytical stability bound for a class of delayed fractional order dynamic systems. Nonlinear Dyn. 29, 191–200 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  12. Deng, W., Li, C., Lü, J.: Stability analysis of linear fractional differential system with multiple time delays. Nonlinear Dyn. 48, 409–416 (2007)

    Article  MATH  Google Scholar 

  13. Hwang, C., Cheng, Y.: A numerical algorithm for stability testing of fractional delay systems. Automatica 42, 825–831 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  14. Ahn, H.S., Chen, Y.Q.: Necessary and sufficient stability condition of fractional order interval linear systems. Automatica 44, 2985–2988 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  15. Tavazoei, M.S., Haeri, M.: A note on the stability of fractional order systems. Math. Comput. Simul. 79, 1566–1576 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  16. Chen, Y.Q., Ahn, H.S., Podlubny, I.: Robust stability check of fractional order linear time invariant systems with interval uncertainties. Signal Process. 86, 2611–2618 (2006)

    Article  MATH  Google Scholar 

  17. Tavazoei, M.S., Haeri, M., Bolouki, S., Siami, M.: Stability preservation analysis for frequency based methods in numerical simulation of fractional order systems. SIAM J. Numer. Anal. 47, 321–338 (2008)

    Article  MathSciNet  Google Scholar 

  18. Tavazoei, M.S., Haeri, M.: Rational approximations in the simulation and implementation of fractional order dynamics: A descriptor system approach. Automatica (2009). doi:10.1016/j.automatica.2009.09.016. In press

    Google Scholar 

  19. Li, Y., Chen, Y.Q., Podlubny, I.: Mittag–Leffler stability of fractional order nonlinear dynamic systems. Automatica 45, 1965–1969 (2009)

    Article  MATH  Google Scholar 

  20. Wen, X.J., Wu, Z.M., Lu, J.G.: Stability analysis of a class of nonlinear fractional order systems. IEEE Trans. Circuits Syst. II 55, 1178–1182 (2008)

    Article  Google Scholar 

  21. Tavazoei, M.S.: Comments on “Stability analysis of a class of nonlinear fractional order systems”. IEEE Trans. Circuits Syst. II 56, 519–520 (2009)

    Article  Google Scholar 

  22. Li, Y., Chen, Y.Q., Podlubny, I.: Stability of fractional order nonlinear dynamic systems: Lyapunov direct method and generalized Mittag Leffler stability. Comput. Math. Appl. (2009). doi:10.1016/j.camwa.2009.08.019. In press

    Google Scholar 

  23. Petras, I.: Stability of fractional order systems with rational orders: A survey. Fract. Calc. Appl. Anal. 12, 269–298 (2009)

    MATH  MathSciNet  Google Scholar 

  24. Golub, G.H., Van Loan, C.F.: Matrix Computations. Johns Hopkins University Press, Baltimore (1996)

    MATH  Google Scholar 

  25. Huang, T.Z.: Stability criteria for matrices. Automatica 34(5), 637–639 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  26. Hamamci, S.E.: An algorithm for stabilization of fractional order time delay systems using fractional order PID controllers. IEEE Trans. Automat. Contr. 52, 1964–1969 (2007)

    Article  MathSciNet  Google Scholar 

  27. Hamamci, S.E.: Stabilization using fractional order PI and PID controllers. Nonlinear Dyn. 51(1–2), 329–343 (2008)

    MATH  Google Scholar 

  28. Bonnet, C., Partington, J.R.: Stabilization of some fractional delay systems of neutral type. Automatica 43, 2047–2053 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  29. Li, C., Peng, G.: Chaos in Chen’s system with a fractional order. Chaos Solitons Fractals 22, 443–450 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  30. Tavazoei, M.S., Haeri, M.: A necessary condition for double scroll attractor existence in fractional order systems. Phys. Lett. A 367(1–2), 102–113 (2007)

    Article  Google Scholar 

  31. Tavazoei, M.S., Haeri, M., Jafari, S.: Fractional controller to stabilize fixed points of uncertain chaotic systems: theoretical and experimental study. Proc. Inst. Mech. Eng., Part I, J. Syst. Control Eng. 222, 175–184 (2008)

    Article  Google Scholar 

  32. Ahmed, E., El-Sayed, A.M.A., El-Saka, H.A.A.: Equilibrium points, stability and numerical solutions of fractional order predator-prey and rabies models. J. Math. Anal. Appl. 325, 542–553 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  33. Tavazoei, M.S., Haeri, M.: Chaotic attractors in incommensurate fractional order systems. Phys. D: Nonlinear Phenom. 237, 2628–2637 (2008)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Saleh Tavazoei.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kheirizad, I., Tavazoei, M.S. & Jalali, A.A. Stability criteria for a class of fractional order systems. Nonlinear Dyn 61, 153–161 (2010). https://doi.org/10.1007/s11071-009-9638-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-009-9638-1

Navigation