Skip to main content
Log in

Anomaly detection combining one-class SVMs and particle swarm optimization algorithms

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Anomalies are patterns in data that do not conform to a well-defined notion of normal behavior. One-class Support Vector Machines calculate a hyperplane in the feature space to distinguish anomalies, but the false positive rate is always high and parameter selection is a key issue. So, we propose a novel one-class framework for detecting anomalies, which takes the advantages of both boundary movement strategy and the effectiveness of evaluation algorithm on parameters optimization. First, we search the parameters by using a particle swarm optimization algorithm. Each particle suggests a group of parameters, the area under receiver operating characteristic curve is chosen as the fitness of the object function. Second, we improve the original decision function with a boundary movement. After the threshold has been adjusted, the final detection function will bring about a high detection rate with a lower false positive rate. Experimental results on UCI data sets show that the proposed method can achieve better performance than other one class learning schemes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hodge, V., Austin, J.: A survey of outlier detection methodologies. Artif. Intell. Rev. 22(2), 85–126 (2004)

    Article  MATH  Google Scholar 

  2. Filzmoser, P., Maronna, R., Werner, M.: Outlier identification in high dimensions. Comput. Stat. Data Anal. 52(3), 1694–1711 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  3. Scholkopf, B., Williamson, R.C., Smola, A.J., Shawe-Taylor, J., Platt, J.: Support vector method for novelty detection. Adv. Neural Inf. Process. Syst. 12, 582–588 (2000)

    Google Scholar 

  4. Scholkopf, B., Platt, J.C., Shawe-Taylor, J., Smola, A.J., Williamson, R.C.: Estimating the support of a high-dimensional distribution. Neural Comput. 13(7), 1443–1471 (2001)

    Article  Google Scholar 

  5. Tax, D.M.J., Duin, R.P.W.: Support vector domain description. Pattern Recogn. Lett. 20(11–13), 1191–1199 (1999)

    Article  Google Scholar 

  6. Tax, D.M.J., Duin, R.P.W.: Support vector data description. Mach. Learn. 54(1), 45–66 (2004)

    Article  MATH  Google Scholar 

  7. Davy, M., Desobry, F., Gretton, A., Doncarli, C.: An online support vector machine for abnormal events detection. Signal Process. 86(8), 2009–2025 (2006)

    Article  MATH  Google Scholar 

  8. Zhang, Y., Liu, X.D., Xie, F.D., Li, K.Q.: Fault classifier of rotating machinery based on weighted support vector data description. Expert Syst. Appl. 36(4), 7928–7932 (2009)

    Article  Google Scholar 

  9. King, S.P., King, D.M., Astley, K., Tarassenko, L., Hayton, P., Utete, S.: The use of novelty detection techniques for monitoring high-integrity plant. In: Proceedings of the 2002 International Conference on Control Applications, Cancun, Mexico, vol. 1, pp. 221–226 (2002)

  10. Gardner, A.B., Krieger, A.M., Vachtsevanos, G., Litt, B.: One-class novelty detection for seizure analysis from intracranial eeg. J. Mach. Learn. Res. 7, 1025–1044 (2006)

    MathSciNet  Google Scholar 

  11. Eskin, E., Arnold, A., Prerau, M., Portnoy, L., Stolfo, S.: A geometric framework for unsupervised anomaly detection: Detecting intrusions in unlabeled data. In: Data Mining for Security Applications, vol. 19 (2002)

  12. Lazarevic, A., Ertoz, L., Kumar, V., Ozgur, A., Srivastava, J.: A comparative study of anomaly detection schemes in network intrusion detection. In: Proceedings of Third SIAM Conference on Data Mining, San Francisco, vol. 3 (2003)

  13. Giacinto, G., Perdisci, R., Del Rio, M., Roli, F.: Intrusion detection in computer networks by a modular ensemble of one-class classifiers. Inf. Fusion 9(1), 69–82 (2008)

    Article  Google Scholar 

  14. Bradley, A.P.: The use of the area under the ROC curve in the evaluation of machine learning algorithms. Pattern Recogn. 30(7), 1145–1159 (1997)

    Article  Google Scholar 

  15. Hassan, M.R., Hossain, M.M., Bailey, J., Ramamohanarao, K.: Improving k-nearest neighbour classification with distance functions based on receiver operating characteristics. In: Proceedings of the 2008 European Conference on Machine Learning and Knowledge Discovery in Databases—Part I, Antwerp, Belgium. Lecture Notes in Artificial Intelligence, vol. 5211, pp. 489–504. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  16. Vapnik, V.N.: The Nature of Statistical Learning Theory. Springer, Berlin (2000)

    MATH  Google Scholar 

  17. Muller, K.R., Mika, S., Ratsch, G., Tsuda, K., Scholkopf, B.: An introduction to kernel-based learning algorithms. IEEE Trans. Neural Netw. 12(2), 181 (2001)

    Article  Google Scholar 

  18. Egan, J.P.: Signal Detection Theory and ROC Analysis. Academic Press, New York (1975)

    Google Scholar 

  19. Fawcett, T.: ROC graphs: Notes and practical considerations for data mining researchers. Tech. Rep. (2004)

  20. Fawcett, T.: An introduction to ROC analysis. Pattern Recogn. Lett. 27(8), 861–874 (2006)

    Article  MathSciNet  Google Scholar 

  21. Chandola, V., Banerjee, A., Kumar, V.: Anomaly detection: A survey. In: ACM Computing Surveys (2009)

  22. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Neural Networks, 1995. Proceedings. IEEE International Conference on, Piscataway, NJ, vol. 4 (1995)

  23. Bazi, Y., Melgani, F.: Semisupervised pso-svm regression for biophysical parameter estimation. IEEE Trans. Geosci. Remote Sens. 45(6), 1887–1895 (2007)

    Google Scholar 

  24. Melgani, F., Bazi, Y.: Classification of electrocardiogram signals with support vector machines and particle swarm optimization. IEEE Trans. Information Technol. Biomed. 12(5), 667–677 (2008)

    Article  Google Scholar 

  25. Peng, T., Zuo, W.L., He, F.L.: Svm based adaptive learning method for text classification from positive and unlabeled documents. Knowl. Inf. Syst. 16(3), 281–301 (2008)

    Article  Google Scholar 

  26. Cao, L.J., Lee, H.P., Chong, W.K.: Modified support vector novelty detector using training data with outliers. Pattern Recogn. Lett. 24(14), 2479–2487 (2003)

    Article  MATH  Google Scholar 

  27. Oliveira, A.L.I., Costa, F.R.G., Filho, C.O.S.: Novelty detection with constructive probabilistic neural networks. Neurocomputing 71(4–6), 1046–1053 (2008)

    Article  Google Scholar 

  28. Theodoridis, S., Koutroumbas, K.: Pattern Recognition, 3rd edn. Academic Press, San Diego (2006)

    MATH  Google Scholar 

  29. Bishop, C.: Neural Networks for Pattern Recognition. Oxford University Press, Oxford (1995)

    Google Scholar 

  30. Kohonen, T.: The self-organizing map. Neurocomputing 21(1–3), 1–6 (1998)

    Article  MATH  Google Scholar 

  31. Jolliffe, I.: Principal Component Analysis. Springer, New York (2002)

    MATH  Google Scholar 

  32. Mierswa, I., Wurst, M., Klinkenberg, R., Scholz, M., Euler, T.: Yale: Rapid prototyping for complex data mining tasks. In: International Conference on Knowledge Discovery and Data Mining, pp. 935–940. Association for Computing Machinery, Philadelphia (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiang Tian.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tian, J., Gu, H. Anomaly detection combining one-class SVMs and particle swarm optimization algorithms. Nonlinear Dyn 61, 303–310 (2010). https://doi.org/10.1007/s11071-009-9650-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-009-9650-5

Keywords

Navigation