Skip to main content
Log in

Global dynamics and integrity of a two-dof model of a parametrically excited cylindrical shell

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper the global dynamics and topological integrity of the basins of attraction of a parametrically excited cylindrical shell are investigated through a two-degree-of-freedom reduced order model. This model, as shown in previous authors’ works, is capable of describing qualitatively the complex nonlinear static and dynamic buckling behavior of the shell. The discretized model is obtained by employing Donnell shallow shell theory and the Galerkin method. The shell is subjected to an axial static pre-loading and then to a harmonic axial load. When the static load is between the buckling load and the minimum post-critical load, a three potential well is obtained. Under these circumstances the shell may exhibit pre- and post-buckling solutions confined to each of the potential wells as well as large cross-well motions. The aim of the paper is to analyze in a systematic way the bifurcation sequences arising from each of the three stable static solutions, obtaining in this way the parametric instability and escape boundaries. The global dynamics of the system is analyzed through the evolution of the various basins of attraction in the four-dimensional phase space. The concepts of safe basin and integrity measures quantifying its magnitude are used to obtain the erosion profile of the various solutions. A detailed parametric analysis shows how the basins of the various solutions interfere with each other and how this influences the integrity measures. Special attention is dedicated to the topological integrity of the various solutions confined to the pre-buckling well. This allows one to evaluate the safety and dynamic integrity of the mechanical system. Two characteristic cases, one associated with a sub-critical parametric bifurcation and another with a super-critical parametric bifurcation, are considered in the analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Thompson, J.M.T.: Chaotic behavior triggering the escape from a potential well. Proc. R. Soc. Lond. A 421, 195–225 (1989)

    Article  MATH  Google Scholar 

  2. Soliman, M.S., Thompson, J.M.T.: Integrity measures quantifying the erosion of smooth and fractal basins of attraction. J. Sound Vib. 135, 453–475 (1989)

    Article  MathSciNet  Google Scholar 

  3. Lansbury, A.N., Thompson, J.M.T., Stewart, H.B.: Basin erosion in the twin-well Duffing oscillator: two distinct bifurcation scenarios. Int. J. Bifurc. Chaos 2, 505–532 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  4. Soliman, M.S., Thompson, J.M.T.: Global dynamics underlying sharp basin erosion in nonlinear driven oscillators. Phys. Rev. A 45, 3425–3431 (1992)

    Article  Google Scholar 

  5. Xu, J., Lu, Q., Huang, K.: Controlling erosion of safe basin in nonlinear parametrically excited systems. Acta Mech. Sin. 12, 281–288 (1996)

    Article  MATH  Google Scholar 

  6. Gan, C., Lu, Q., Huang, K.: Nonstationary effects on safe basins of a forced softening Duffing oscillator. Acta Mech. Sin. 11, 253–260 (1998)

    Google Scholar 

  7. Souza, J.R. Jr., Rodrigues, M.L.: An investigation into mechanisms of loss of safe basins in a 2 D.O.F. nonlinear oscillator. J. Braz. Soc. Mech. Sci. Eng. 24, 93–98 (2002)

    Google Scholar 

  8. Soliman, M.S., Gonçalves, P.B.: Chaotic behavior resulting in transient and steady state instabilities of pressure-loaded shallow spherical shells. J. Sound Vib. 259, 497–512 (2003)

    Article  Google Scholar 

  9. de Freitas, M.S.T., Viana, R.L., Grebogi, C.: Erosion of the safe basin for the transversal oscillations of a suspension bridge. Chaos Solitons Fractals 18, 829–841 (2003)

    Article  MATH  Google Scholar 

  10. Lenci, S., Rega, G.: Optimal control of homoclinic bifurcation: theoretical treatment and practical reduction of safe basin erosion in the Helmholtz oscillator. J. Vib. Control 9, 281–316 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  11. Wu, X., Tao, L., Li, Y.: The safe basin erosion of a ship in waves with single degree of freedom. In: Proc. of the 15th Australasian Fluid Mechanics Conference, Sydney, Australia, 13–17 December 2004

  12. Goncalves, P.B., Silva, F.M.A., Del Prado, Z.J.G.N.: Global stability analysis of parametrically excited cylindrical shells through the evolution of basin boundaries. Nonlinear Dyn. 50, 121–145 (2007)

    Article  MATH  Google Scholar 

  13. McDonald, S.W., Grebogi, C., Ott, E., Yorke, J.A.: Fractal basin boundaries. Physica D 17, 125–153 (1985)

    MATH  MathSciNet  Google Scholar 

  14. Yang, X.-S., Yang, S.S., Duan, C.K.: Intertwined basin of attraction in systems of ODE. Chaos Solitons Fractals 10, 1453–1456 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  15. Rega, G., Lenci, S.: Identifying, evaluating and controlling dynamical integrity measures in non-linear mechanical oscillators. Nonlinear Anal. 63, 902–914 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  16. Rega, G., Lenci, S.: Dynamical integrity and control of nonlinear mechanical oscillators. J. Vib. Control 14, 159–179 (2008)

    Article  Google Scholar 

  17. Lenci, S., Rega, G.: A dynamical systems analysis of the overturning of rigid blocks. In: Proc. of the XXI International Conference of Theoretical and Applied Mechanics, IPPT PAN, Warsaw, Poland, 15–21 August 2004 (CD-Rom). ISBN 83-89687-01-1

  18. Lenci, S., Rega, G.: Control of pull-in dynamics in a nonlinear thermoelastic electrically actuated microbeam. J. Micromech. Microeng. 16, 390–401 (2006)

    Article  Google Scholar 

  19. Lenci, S., Rega, G.: Optimal control of nonregular dynamics in a Duffing oscillator. Nonlinear Dyn. 33, 71–86 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  20. Lenci, S., Rega, G.: Competing dynamic solutions in a parametrically excited pendulum: attractor robustness and basin integrity. ASME J. Comput. Nonlinear Dyn. 3, 1–9 (2008)

    Article  Google Scholar 

  21. Rega, G., Troger, H.: Dimension reduction of dynamical systems: methods, models, applications. Nonlinear Dyn. 41, 1–15 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  22. Amabili, M., Païdoussis, M.P.: Review of studies on geometrically nonlinear vibrations and dynamics of circular cylindrical shells and panels, with and without fluid-structure interaction. Appl. Mech. Rev. 56, 655–699 (2003)

    Article  Google Scholar 

  23. Popov, A.A., Thompson, J.M.T., McRobie, F.A.: Low dimensional models of shell vibration: parametrically excited vibrations of cylindrical shells. J. Sound Vib. 209, 163–186 (1998)

    Article  Google Scholar 

  24. Gonçalves, P.B., Del Prado, Z.J.G.N.: Nonlinear oscillations and stability of parametrically excited cylindrical shells. Meccanica 37, 569–597 (2002)

    Article  MATH  Google Scholar 

  25. Gonçalves, P.B., Del Prado, Z.J.G.N.: Low-dimensional Galerkin models for nonlinear vibration and instability analysis of cylindrical shells. Nonlinear Dyn. 41, 129–145 (2005)

    Article  MATH  Google Scholar 

  26. Jansen, E.L.: Dynamic stability problems of anisotropic cylindrical shells via a simplified analysis. Nonlinear Dyn. 39, 349–367 (2005)

    Article  MATH  Google Scholar 

  27. Pellicano, F., Amabili, M.: Dynamic instability and chaos of empty and fluid-filled circular cylindrical shells under periodic axial loads. J. Sound Vib. 293, 227–252 (2006)

    Article  Google Scholar 

  28. Mallon, N.J., Fey, R.H.B., Nijmeijer, H.: Dynamic stability of a thin cylindrical shell with top mass subjected to harmonic base-acceleration. Int. J. Solids Struct. 45, 1587–1613 (2008)

    Article  MATH  Google Scholar 

  29. Croll, J.G.A., Batista, R.C.: Explicit lower bounds for the buckling of axially loaded cylinders. Int. J. Mech. Sci. 23, 331–343 (1981)

    Article  MATH  Google Scholar 

  30. Hunt, G.W., Williams, K.A.J., Cowell, R.G.: Hidden symmetry concepts in the elastic buckling of axially-loaded cylinders. Int. J. Solids Struct. 22, 1501–1515 (1986)

    Article  MATH  Google Scholar 

  31. Popov, A.A.: The application of Hamiltonian dynamics and averaging to nonlinear shell vibration. Comput. Struct. 82, 2659–2670 (2004)

    Article  Google Scholar 

  32. Bazant, Z.P., Cedolin, L.: Stability of Structures. Oxford Press, Oxford (1991)

    MATH  Google Scholar 

  33. Gonçalves, P.B., Silva, F.M.A., Del Prado, Z.J.G.N.: Low-dimensional models for the nonlinear vibration analysis of cylindrical shells based on a perturbation procedure and proper orthogonal decomposition. J. Sound Vib. 315, 641–663 (2008)

    Article  Google Scholar 

  34. Gonçalves, P.B., Batista, R.C.: Non-linear vibration analysis of fluid-filled cylindrical shells. J. Sound Vib. 127, 133–143 (1988)

    Article  Google Scholar 

  35. Amabili, M.: Nonlinear Vibrations and Stability of Shells and Plates. Cambridge Press, Cambridge (2008)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paulo B. Gonçalves.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gonçalves, P.B., Silva, F.M.A., Rega, G. et al. Global dynamics and integrity of a two-dof model of a parametrically excited cylindrical shell. Nonlinear Dyn 63, 61–82 (2011). https://doi.org/10.1007/s11071-010-9785-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-010-9785-4

Keywords

Navigation