Skip to main content
Log in

Improved reduced order solution techniques for nonlinear systems with localized nonlinearities

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper examines the modeling and solution of large-order nonlinear systems with continuous nonlinearities which are spatially localized. This localization is exploited by a combined component mode synthesis (CMS)—dynamic substructuring approach for efficient model reduction. A new ordering method for the Fourier coefficients used in the Harmonic Balance Method (HBM) is proposed. This allows the calculation of the slave dynamic flexibility matrix, using simple analytical expressions thus saving considerable computational effort by avoiding inverse calculation. This procedure is also capable of handling proportional damping. A hypersphere-based continuation technique is used to trace the solution, and hence track bifurcations since it has the advantage that the augmented Jacobian matrix remains square. The reduced system is also solved using a time-variational method (TVM) which generates sparse Jacobian matrices when compared with HBM. Several systems including those with parametric excitation and internal resonances are solved to demonstrate the capability of the proposed schemes. A comparison of these techniques and their effectiveness in solving extremely strong nonlinear systems with continuous nonlinearities is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

HBM:

Harmonic Balance Method

TVM:

Time Variational Method

DOF:

Degrees-of-Freedom

M :

Mass matrix

C :

Damping matrix

K :

Stiffness matrix

\(\ddot{\mathbf{x}}\) :

Acceleration vector

\(\mathbf{\dot{x}}\) :

Velocity vector

t :

Time

x :

Displacement vector

\(\mathbf{f}(\mathbf{x},\dot{\mathbf{x}})\) :

Nonlinear force vector

F(t):

External excitation vector

x k (t):

Approximated Fourier series expansion of displacement vector for kth DOF

\(\tilde{x}_{k0}\) :

DC term of the Fourier series expansion of displacement kth DOF

\(\tilde{x}_{kn}^{c}\) :

Coefficient of the cosine term of Fourier series expansion of displacement kth DOF

\(\tilde{x}_{kn}^{s}\) :

Coefficient of the sine term of Fourier series expansion of displacement kth DOF

F k (t):

Approximated Fourier series expansion of external force vector applied on kth DOF

\(\tilde{F}_{k0}\) :

DC term of the Fourier series of external force vector kth DOF

\(\tilde{F}_{kn}^{c}\) :

Coefficient of the cosine term of Fourier series of external force vector kth DOF

\(\tilde{F}_{kn}^{s}\) :

Coefficient of the sine term of Fourier series expansion of external force vector kth DOF

\(\mathbf{f}_{k}(\mathbf{x},\dot{\mathbf{x}})\) :

Approximated Fourier series expansion of nonlinear force vector kth DOF

\(\tilde{f}_{k0}\) :

DC term of the Fourier series of expansion of nonlinear force vector kth DOF

\(\tilde{f}_{kn}^{c}\) :

Coefficient of the cosine term of Fourier series of nonlinear force vector kth DOF

\(\tilde{f}_{kn}^{s}\) :

Coefficient of the sine term of Fourier series expansion of nonlinear force vector kth DOF

\(\mathbf{f}_{\mathrm{p}k}(\mathbf{x},\dot{\mathbf{x}},\mathbf {t})\) :

Approximated Fourier series expansion of parametric excitation vector kth DOF

\(\tilde{f}_{\mathrm{p}k0}\) :

DC term of the Fourier series of expansion of parametric excitation vector kth DOF

\(\tilde{f}_{\mathrm{p}kn}^{c}\) :

Coefficient of the cosine term of Fourier series of parametric excitation vector kth DOF

\(\tilde{f}_{\mathrm{p}kn}^{s}\) :

Coefficient of the sine term of Fourier series expansion of parametric excitation vector kth DOF

α :

Nonlinear/Parametric excitation coefficient

R(γ) :

Residue vector

Y :

Fourier/ Time variational Admittance Matrix

Y s s −1 :

Slave Flexibility Matrix

J :

Jacobian matrix

ε :

Convergence tolerance

\(\hat{\mathbf{f}}\) :

Nonlinear force TVM coefficients

\(\hat{\mathbf{x}}\) :

Displacement TVM coefficients

\(\hat{\mathbf{F}}\) :

External force TVM coefficients

U :

Eigen vector matrix

φ :

Retained Mode matrix

ψ :

Constraint mode matrix

ζ:

Damping ratio

ω :

Excitation frequency

Ω i :

ith Natural frequency

Δ:

Increment between iterations

c:

Hypersphere center

FM:

Full Model

MS:

Mode Superposition

PC:

Physical Condensation

CM:

Component Mode

ss:

Slave partition

sm:

Slave master partition

ms:

Master slave partition

mm:

Master master partition

References

  1. Guyan, R.J.: Reduction of stiffness and mass matrices. AIAA J. 3, 380 (1965)

    Article  Google Scholar 

  2. Leung, A.Y.T., Fung, T.C.: Linear and nonlinear substructures. Int. J. Numer. Methods Eng. 31, 967–985 (1991)

    Article  MATH  Google Scholar 

  3. Qu, Z.-Q.: Model Order Reduction Techniques with Applications in Finite Element Analysis. Springer, Berlin (2004)

    Google Scholar 

  4. Hurty, W.C.: Dynamic analysis of structural systems using component modes. AIAA J. 3(4), 678–685 (1965)

    Article  Google Scholar 

  5. Craig, R.R., Jr., Bampton, M.C.C.: Coupling of substructures for dynamic analysis. AIAA J. 6(7), 1313–1319 (1968)

    Article  MATH  Google Scholar 

  6. Yousef, S.: Iterative Methods for Sparse Linear Systems, 2nd edn. SIAM, Philadelphia (2003)

    MATH  Google Scholar 

  7. Hairer, E., Wanner, G., Norsett, S.P.: Solving Ordinary Differential Equations. I. Nonstiff Problems, vol. I. Springer, Berlin (1980)

    Google Scholar 

  8. Hairer, E., Wanner, G.: Solving Ordinary Differential Equations. II. Stiff and Differential-Algebraic Problems, vol. II. Springer, Berlin (1980)

    Google Scholar 

  9. Fung, T.C., Fan, S.C.: Mixed time finite elements for vibration response analysis. J. Sound Vib. 213(3), 409–428 (1998)

    Article  MathSciNet  Google Scholar 

  10. Urabe, M., Reiter, A.: Numerical computation of nonlinear forced oscillations by Gelarkin’s method. J. Math. Anal. Appl. 14, 107–140 (1966)

    Article  MATH  MathSciNet  Google Scholar 

  11. Leung, A.Y.T., Chu, S.K.: Nonlinear vibration of coupled duffing oscillators by an improved incremental harmonic balance method. J. Sound Vib. 181, 619–633 (1995)

    Article  Google Scholar 

  12. Blair, B., Krousgrill, C., Farris, T.N.: Harmonic balance and continuation technique in the dynamic analysis of the Duffing’s equation. J. Sound Vib. 202, 717–731 (1997)

    Article  MathSciNet  Google Scholar 

  13. Ragothama, A., Narayanan, S.: Bifurcations and chaos in geared rotor bearing system by incremental harmonic balance method. J. Sound Vib. 226(3), 469–492 (1999)

    Article  Google Scholar 

  14. Cheung, Y.K., Chen, S.H., Lau, S.L.: Application of incremental harmonic balance method to cubic nonlinearity systems. J. Sound Vib. 140, 273–286 (1990)

    Article  MathSciNet  Google Scholar 

  15. Feri, A.A., Dowell, E.H.: Frequency domain solutions to multi degree of freedom dry friction damped system. J. Sound Vib. 124, 207–224 (1988)

    Article  Google Scholar 

  16. Wu, J.J.: A generalized harmonic balance method for nonlinear oscillations: the sub harmonic cases. J. Sound Vib. 159, 503–525 (1992)

    Article  MATH  Google Scholar 

  17. Cameron, H., Griffin, J.H.: An alternating frequency/time domain method for calculating the steady state response of nonlinear dynamic systems. ASME J. Appl. Mech. 56, 149–154 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  18. Blankenship, W., Kahraman, A.: Steady state forced response of a mechanical oscillator with combined parametric excitation and clearance type nonlinearity. J. Sound Vib. 185, 743–765 (1995)

    Article  MATH  Google Scholar 

  19. Leung, A.Y.T., Fung, T.C.: Damped dynamic substructures. Int. J. Numer. Methods Eng. 26, 2355–2365 (1988)

    Article  MATH  Google Scholar 

  20. Borri, M., Bottasso, C., Mantegazza, C.: Basic features of the time finite element approach for dynamics. Meccanica 27, 119–130 (1992)

    Article  MATH  Google Scholar 

  21. Wang, Y.: Stick-slip motion of frictionally damped turbine airfoils: a finite element in time (fet) approach. ASME J. Vib. Acoust. 119, 236–242 (1997)

    Article  Google Scholar 

  22. Wang, Y.: A temporal finite element method for the dynamics analysis of flexible mechanisms. J. Sound Vib. 213(3), 569–576 (1998)

    Article  Google Scholar 

  23. Rook, T.: An alternate method to the alternating time-frequency method. Nonlinear Dyn. 27, 327–339 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  24. Broyden, C.G.: A new method of solving nonlinear simultaneous equations. Comput. J. 12, 94–99 (1969)

    MATH  MathSciNet  Google Scholar 

  25. Powell, M.J.D.: A hybrid method for nonlinear equations. In: Numerical Methods for Nonlinear Algebraic Equations. Gordon & Breach, New York (1988)

    Google Scholar 

  26. Yamamura, K.: Simple algorithms for tracing solution curves. IEEE Trans. Circuits Syst. I, Fund. Theory Appl. 40(8), 534–540 (1993)

    MathSciNet  Google Scholar 

  27. Padmanabhan, C., Singh, R.: Dynamics of a piecewise nonlinear system subject to dual harmonic excitation using parametric continuation. J. Sound Vib. 184(5), 767–799 (1995)

    Article  MATH  Google Scholar 

  28. Padmanabhan, C., Singh, R.: Analysis of periodically excited nonlinear systems by a parametric continuation technique. J. Sound Vib. 184(1), 35–58 (1995)

    Article  Google Scholar 

  29. Golub, G.H., VanLoan, C.F.: Matrix Computations, 3rd edn. Hindustan Book Agency, Gurgaon (2007)

    MATH  Google Scholar 

  30. Von Groll, G., Ewins, D.J.: The harmonic balance method with arc-length continuation in rotor/stator contact problems. J. Sound Vib. 241(2), 223–233 (2001)

    Article  Google Scholar 

  31. Dai, L., Xu, L., Han, Q.: Semi-analytical and numerical solutions of multi-degree-of-freedom nonlinear oscillation systems with linear coupling. Commun. Nonlinear Sci. Numer. Simul. 11, 831–844 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  32. Slatec common mathematical library. World Wide Web, July (1993)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Padmanabhan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Praveen Krishna, I.R., Padmanabhan, C. Improved reduced order solution techniques for nonlinear systems with localized nonlinearities. Nonlinear Dyn 63, 561–586 (2011). https://doi.org/10.1007/s11071-010-9820-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-010-9820-5

Keywords

Navigation