Skip to main content
Log in

Bistability of curved microbeams actuated by fringing electrostatic fields

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this work we investigate the feasibility of two-directional switching of an initially curved or pre-buckled electrostatically actuated microbeams using a single electrode fabricated from the same structural layer. The distributed electrostatic force, which is engendered by the asymmetry of the fringing fields in the deformed state, acts in the direction opposite to the deflection of the beam and can be effectively viewed as a reaction of a nonlinear elastic foundation with stiffness parameterized by the voltage. The reduced order model was built using the Galerkin decomposition with linear undamped modes of a straight beam as base functions and verified using the results of the numerical solution of the differential equation. The electrostatic force was approximated by means of fitting the results of three-dimensional numerical solution of the electrostatic problem. Static stability analysis reveals that the presence of the restoring electrostatic force may result in the suppression of the snap-through instability as well as in the appearance of additional stable configurations associated with higher buckling modes of the beam that are not observed in “mechanically” loaded structures. We show that two-directional switching of a pre-buckled beam between two stable configurations cannot be achieved using quasistatic loading. Furthermore, we show that switching is both associated with the dynamic snap-through mechanism and possible within certain interval of actuation voltages. Using a single-degree-of-freedom (lumped) model, estimation voltage boundaries are obtained. Theoretical results illustrate the feasibility of the suggested operational principle as an efficient mechanism in the arena of non-volatile mechanical memory devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Buchaillot, L., Millet, O., Quévy, E., Collard, D.: Post-buckling dynamic behavior of self-assembled 3D microstructures. Microsyst. Technol. 14, 69–78 (2007)

    Article  Google Scholar 

  2. Casals-Terré, J., Fargas-Marques, A., Shkel, A.M.: Snap-action bistable micromechanisms actuated by nonlinear resonance. J. Microelectromech. Syst. 17, 1082–1093 (2008)

    Article  Google Scholar 

  3. Das, K., Batra, R.C.: Pull-in and snap-through instabilities in transient deformations of microelectromechanical systems. J. Micromech. Microeng. 19, 035008 (2009)

    Article  Google Scholar 

  4. Das, K., Batra, R.C.: Symmetry breaking, snap-through and pull-in instabilities under dynamic loading of microelectromechanical shallow arches. Smart Mater. Struct. 18, 115008 (2009)

    Article  Google Scholar 

  5. Gerson, Y., Krylov, S., Ilic, B.R.: Electrothermal bistability tuning in a large displacement micro-actuator. J. Micromech. Microeng. 20, 112001 (2010)

    Article  Google Scholar 

  6. Krylov, S., Ilic, B.R., Schreiber, D., Seretensky, S., Craighead, H.G.: Pull-in behavior of electrostatically actuated bistable microstructures. J. Micromech. Microeng. 18, 055026 (2008)

    Article  Google Scholar 

  7. Krylov, S., Dick, N.: Dynamic stability of electrostatically actuated initially curved shallow microbeams. Contin. Mech. Thermodyn. 22, 445–468 (2010)

    Article  MathSciNet  Google Scholar 

  8. Michael, A., Kwok, C.Y.: Design criteria for bi-stable behavior in a buckled multi-layered MEMS bridge. J. Micromech. Microeng. 16, 2034–2043 (2006)

    Article  Google Scholar 

  9. Pane, I.Z., Asano, T.: Investigation on bistability and fabrication of bistable prestressed curved beam. Jpn. J. Appl. Phys. 47, 5291–5296 (2008)

    Article  Google Scholar 

  10. Ouakad, H.M., Younis, M.I.: The dynamic behavior of MEMS arch resonators actuated electrically. Int. J. Non-Linear Mech. 45, 704–713 (2010)

    Article  Google Scholar 

  11. Qui, J., Lang, J.H., Slocum, A.H.: A curved beam bistable mechanism. J. Microelectromech. Syst. 13, 137–146 (2004)

    Article  Google Scholar 

  12. Seunghoon, P., Dooyoung, H.: Pre-shaped buckled-beam actuators: Theory and experiments. Sens. Actuators A, Phys. 148, 186–192 (2008)

    Article  Google Scholar 

  13. Saif, M.T.A.: On a tunable bistable MEMS—Theory and experiment. J. Microelectromech. Syst. 9, 157–170 (2000)

    Article  Google Scholar 

  14. Sulfridge, M., Saif, T., Miller, N., Meinhart, M.: Nonlinear dynamic study of a bistable MEMS: Model and experiment. J. Microelectromech. Syst. 13, 725–731 (2004)

    Article  Google Scholar 

  15. Vangbo, M., Bäcklund, Y.: A lateral symmetrically bistable buckled beam. J. Micromech. Microeng. 8, 29–32 (1998)

    Article  Google Scholar 

  16. Zhang, Y., Wang, Y., Li, Z., Huang, Y., Li, D.: Snap-through and pull-in instabilities of an arch-shaped beam under an electrostatic loading. J. Microelectromech. Syst. 16, 684–693 (2007)

    Article  Google Scholar 

  17. Charlot, B., Sun, W., Yamashita, K., Fujita, H., Toshiyoshi, H.: Bistable nanowire for micromechanical memory. J. Micromech. Microeng. 18, 045005 (2008)

    Article  Google Scholar 

  18. Halg, B.: On a micro-electro-mechanical nonvolatile memory cell. IEEE Trans. Electron Devices 37, 2230–2236 (1990)

    Article  Google Scholar 

  19. Roodenburg, D., Spronck, J.W., van der Zant, H.S.J., Venstra, W.J.: Buckling beam micromechanical memory with on-chip readout. Appl. Phys. Lett. 94, 183501 (2009)

    Article  Google Scholar 

  20. Rubin, J., Tiwari, S.: An electronic nonvolatile memory device based on electrostatic deflection of a bistable mechanical beam. Tech. Dig. of MRS Fall Meeting, Boston, 27 November–1 December 2006 (oral presentation) O3.10 (2006)

  21. Southworth, D.R., Bellan, L.M., Linzon, Y., Craighead, H.G., Parpia, J.M.: Stress-based vapor sensing using resonant microbridges. Appl. Phys. Lett. 96, 163503 (2010)

    Article  Google Scholar 

  22. Zhao, J., Jia, J., Wang, H., Li, W.: A novel threshold accelerometer with postbuckling structures for airbag restraint systems. IEEE Sens. J. 7(8), 1102–1109 (2007)

    Article  Google Scholar 

  23. Li, H., Balachandran, B.: Buckling and free oscillations of composite microresonators. J. Microelectromech. Syst. 15, 42–51 (2006)

    Article  Google Scholar 

  24. Li, H., Preidikman, S., Balachandran, B., Mote, C.D. Jr.: Nonlinear free and forced oscillations of piezoelectric microresonators. J. Micromech. Microeng. 16, 356–367 (2006)

    Article  Google Scholar 

  25. Li, H., Piekarski, B., DeVoe, D.L., Balachandran, B.: Nonlinear oscillations of piezoelectric microresonators with curved cross sections. Sens. Actuators A, Phys. 144, 194–200 (2008)

    Article  Google Scholar 

  26. Younis, M.I., Ouakad, H.M., Alsaleem, F.M., Miles, R., Cui, W.: Nonlinear dynamics of MEMS arches under harmonic electrostatic actuation. J. Microelectromech. Syst. 19, 647–656 (2010)

    Article  Google Scholar 

  27. Linzon, Y., Krylov, S., Ilic, B., Southworth, D.R., Barton, R.A., Cipriany, B.R., Cross, J.D., Parpia, J.M., Craighead, H.G.: Real-time synchronous imaging of electromechanical resonator mode and equilibrium profiles. Opt. Lett. 35(15), 2654–2656 (2010)

    Article  Google Scholar 

  28. Simitses, G.J., Hodges, D.H.: Fundamentals of Structural Stability. Elsevier, Amsterdam (2006)

    MATH  Google Scholar 

  29. Greason, W.D.: Analysis of charged device model (CDM) ESD in MEMS. J. Electrost. 68, 159–167 (2010)

    Article  Google Scholar 

  30. Zhang, W., Turner, K.L.: Application of parametric resonance amplification in a single-crystal silicon micro-oscillator based mass sensor. Sens. Actuators A, Phys. 122, 23–30 (2005)

    Article  Google Scholar 

  31. Turner, K.L., Miller, S.A., Hartwell, P.G., MacDonald, N.C., Strogatz, S.H., Adams, S.G.: Five parametric resonances in a micromechanical system. Nature 36, 149–152 (1998)

    Article  Google Scholar 

  32. Rhoads, J.F., Shaw, S.W., Turner, K.L., Moehlis, J., DeMartini, B.E., Zhang, W.: Generalized parametric resonance in electrostatically actuated microelectromechanical oscillators. J. Sound Vib. 296, 797–829 (2006)

    Article  Google Scholar 

  33. Lee, K.B.: Non-contact electrostatic microactuator using slit structures: Theory and a preliminary test. J. Micromech. Microeng. 17, 2186–2196 (2007)

    Article  Google Scholar 

  34. Siyuan, H., Ridha, B.M.: Design, modeling, and demonstration of a MEMS repulsive-force out-of-plane electrostatic micro actuator. J. Microelectromech. Syst. 17(3), 532–547 (2008)

    Article  Google Scholar 

  35. Hah, D., Patterson, P.R., Nguyen, H.D., Toshiyoshi, H., Wu, M.C.: Theory and experiments of angular vertical comb-drive actuators for scanning micromirrors. IEEE J. Sel. Top. Quantum Electron. 10, 505–513 (2004)

    Article  Google Scholar 

  36. Su, J., Yang, Fay, H.P., Porod, W., Bernstein, G.G.: A surface micromachined offset-drive method to extend the electrostatic travel range. J. Micromech. Microeng. 20, 015004 (2010)

    Article  Google Scholar 

  37. Agache, V., Legrand, B., Nakamura, K., Kawakatsu, H., Buchaillot, L., Toshiyoshi, H., Collard, D., Fujita, H.: Characterization of vertical vibration of electrostatically actuated resonators using atomic force microscope in noncontact mode. In: Proc. of the 13th Intern. Conf. on Solid-State Sensors, Actuators and Microsystems, Seoul, Korea, June 5–9, 2005, pp. 2023–2026 (2005)

    Google Scholar 

  38. Krylov, S., Molinazzi, N., Shmilovich, T., Pomerantz, U., Lulinsky, S.: Parametric excitation of flexural vibrations of microbeams by fringing electrostatic fields. In: Proc. of the ASME 2010 Int. Design Eng. Tech. Conf. and Comp. and Inf. Eng. Conf. IDETC/CIE 2010, August 15–18, 2010, Montreal, Quebec, Canada (2010)

    Google Scholar 

  39. Villagio, P.: Mathematical Models for Elastic Structures. Cambridge University Press, Cambridge (1997)

    Book  Google Scholar 

  40. Chen, J.-S., Liao, C.-Y.: Experiment and analysis on the free dynamics of a shallow arch after an impact load at the end. J. Appl. Mech. 72, 54–61 (2005)

    Article  MATH  Google Scholar 

  41. Emam, S.A., Nayfeh, A.H.: On the nonlinear dynamics of a buckled beam subjected to a primary-resonance excitation. Nonlinear Dyn. 35, 1–17 (2004)

    Article  MATH  Google Scholar 

  42. Mallon, N.J., Fey, R.H.B., Nijmeijer, H., Zhang, G.Q.: Dynamic buckling of a shallow arch under shock loading considering the effects of the arch shape. Int. J. Non-Linear Mech. 41, 1057–1067 (2006)

    Article  Google Scholar 

  43. Abu-Salih, S., Elata, D.: Experimental validation of electromechanical buckling. J. Microelectromech. Syst. 15(6), 1656–1662 (2006)

    Article  Google Scholar 

  44. Elata, D., Abu-Salih, S.: Analysis of a novel method for measuring residual stress in micro-systems. J. Micromech. Microeng. 15, 921–927 (2005)

    Article  Google Scholar 

  45. Krylov, S., Harari, I., Cohen, Y.: Stabilisation of electrostatically actuated microstructures using parametric excitation. J. Micromech. Microeng. 15(5), 1188–1204 (2006)

    Google Scholar 

  46. Krylov, S.: Parametric excitation and stabilization of electrostatically actuated microstructures. Int. J. Multiscale Comput. Eng. 6(6), 563–584 (2008)

    Article  Google Scholar 

  47. Krylov, S., Gerson, Y., Nahmias, T., Keren, U.: Excitation of large amplitude parametric resonance by the mechanical stiffness modulation of a microstructure. J. Micromech. Microeng. 20, 015041 (2010)

    Article  Google Scholar 

  48. Nayfeh, A.H., Younis, M.I., Abdel-Rahman, E.M.: Reduced-order models for MEMS applications. Nonlinear Dyn. 41, 211–236 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  49. Bochobza-Degani, O., Elata, D., Nemirovsky, Y.: An efficient DIPIE algorithm for CAD of electrostatically actuated MEMS devices. J. Microelectromech. Syst. 11, 612–620 (2002)

    Article  Google Scholar 

  50. Pelesko, J.A., Bernstein, D.H.: Modeling of MEMS and NEMS. Chapman&Hall, London (2002)

    Book  Google Scholar 

  51. Shampine, L.F., Reichelt, M.W., Kierzenka, J.: Solving Boundary Value Problems for Ordinary Differential Equations in MATLAB with bvp4c. Available at www.mathworks.com/bvp_tutorial

  52. Parnes, R.: Bending of an axially constrained beam. Int. J. Mech. Sci. 13, 285–290 (1970)

    Article  Google Scholar 

  53. Dym, C.L.: Stability Theory and Its Applications to Structural Mechanics. Noordhoff, Leyden (1974)

    MATH  Google Scholar 

  54. Bazant, Z.P., Cedolin, L.: Stability of Structures. Elastic, Inelastic, Fracture and Damage Theories. Dover, Mineola (2003)

    Google Scholar 

  55. Simitses, G.J.: Dynamic Stability of Suddenly Loaded Structures. Springer, New York (1989)

    Google Scholar 

  56. Haberman, R., Rand, R., Yuster, T.: Resonant capture and separatrix crossing in dual-spin spacecraft. Nonlinear Dyn. 18, 159–184 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  57. Haberman, R., Rand, R.: Sequences of orbits and the boundaries of the basin of attraction for two double heteroclinic orbits. Int. J. Non-Linear Mech. 34, 1047–1059 (1999)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Slava Krylov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krylov, S., Ilic, B.R. & Lulinsky, S. Bistability of curved microbeams actuated by fringing electrostatic fields. Nonlinear Dyn 66, 403–426 (2011). https://doi.org/10.1007/s11071-011-0038-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-011-0038-y

Keywords

Navigation