Skip to main content
Log in

Adaptive neural network control of bilateral teleoperation with constant time delay

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper proposes a novel approach for bilateral teleoperation systems with a multi degrees-of-freedom (DOF) nonlinear robotic system on the master and slave side with constant time delay in a communication channel. We extend the passivity based architecture to improve position and force tracking and consequently transparency in the face of offset in initial conditions, environmental contacts and unknown parameters such as friction coefficients. The proposed controller employs a stable neural network on each side to approximate unknown nonlinear functions in the robot dynamics, thereby overcoming some limitations of conventional controllers such as PD or adaptive controllers and guaranteeing good tracking performance. Moreover, we show that this new neural network controller preserves the control passivity of the system. Simulation results show that NN controller tracking performance is superior to that of conventional controllers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Chopra, N., Spong, M.W., Lozano, R.: Adaptive coordination control of bilateral teleoperators with time delay. In: IEEE Conference on Decision and Control, pp. 4540–4547 (2004)

    Google Scholar 

  2. Anderson, R.J., Spong, M.W.: Bilateral control of teleoperators with time delay. IEEE Trans. Autom. Control AC-34(5), 494–501 (1989)

    Article  MathSciNet  Google Scholar 

  3. Niemeyer, G., Slotine, J.: Stable adaptive teleoperation. Int. J. Ocean. Engineer. 16(1), 152–162 (1991)

    Article  Google Scholar 

  4. Lawrence, D.A.: Stability and transparency in bilateral teleoperation. IEEE Trans. Robot. Autom. 9(5), 624–637 (1993)

    Article  MathSciNet  Google Scholar 

  5. Munir, S., Book, W.J.: Internet-based teleoperation using wave variables with prediction. IEEE/ASME Trans. Mechatron. 7(2), 124–133 (2002)

    Article  Google Scholar 

  6. Munir, S., Book, W.J.: Control techniques and programming issues for time delayed internet based teleoperation. J. Dyn. Syst. Meas. Control 125(2), 205–214 (2003)

    Article  Google Scholar 

  7. Alise, M., Roberts, R.G., Repperger, D.W., Moore, C.A., Tosunoglu, S.: On extending the wave variable method to multiple-DOF teleoperation systems. IEEE Trans. Mechatron. 14(1), 55–63 (2009)

    Article  Google Scholar 

  8. Ye, Y., Liu, P.X.: Improving trajectory tracking in wave-variable-based teleoperation. IEEE/ASME Trans. Mechatron. 15(2), 321–326 (2010)

    Article  Google Scholar 

  9. Deng, Q.-W., Wei, Q., Li, Z.-X.: Analysis of absolute stability for time-delay teleoperation systems. Int. J. Automat. Comput. 4(2), 203–207 (2007). doi:10.1007/s11633-007-0203-4

    Article  Google Scholar 

  10. Aziminejad, A., Tavakoli, M., Patel, R.V., Moallem, M.: Transparent time-delayed bilateral teleoperation using wave variables. IEEE Trans. Control Syst. Technol. 16(3), 548–555 (2008)

    Article  Google Scholar 

  11. Yalcin, B., Ohnishi, K.: Stable and transparent time-delayed teleoperation by direct acceleration waves. IEEE Trans. Ind. Electron. 57(9), 3228–3238 (2010)

    Article  Google Scholar 

  12. Chopra, N., Spong, M.W., Ortega, R., Barabanov, N.E.: On position tracking in bilateral teleoperation. In: American Control Conference, pp. 5244–5249 (2004)

    Google Scholar 

  13. Lee, D.J., Spong, M.W.: Passive bilateral teleoperation with constant time-delay. IEEE Trans. Robot. (2006)

  14. Lee, D.J., Spong, M.W.: Passive bilateral teleoperation with constant time-delay. In: IEEE int’l Conference on Robotics & Automation (2006)

    Google Scholar 

  15. Nuno, E., Ortega, R., Barabanov, N., Basanez, L.: A globally stable PD controller for bilateral teleoperators. IEEE Trans. Robot. 24(3), 753–758 (2008)

    Article  Google Scholar 

  16. Hua, C., Liu, X.P.: Delay-dependent stability criteria of teleoperation systems with asymmetric time-varying delays. IEEE Transactions on Robotics 26(5), 925–932 (2010)

    Article  Google Scholar 

  17. Nuno, E., Basanez, L., Ortega, R., Spong, M.W.: Position tracking for non-linear teleoperators with variable time delay. Int. J. Robot. Res. 28(7), 895–910 (2009)

    Article  Google Scholar 

  18. Nuño, E., Ortega, R., Basañez, L.: An adaptive controller for nonlinear teleoperators. Automatica 46(1), 155–159 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  19. Smith, A.C., Hashtrudi-Zaad, K.: Neural network-based teleoperation using Smith predictor. In: IEEE International Conference on Mechatronics & Automation (2005)

    Google Scholar 

  20. Wirz, R., Marin, R., Ferre, M., Barrio, J., Claver, J.M., Ortego, J.: Bidirectional transport protocol for teleoperated robots. IEEE Trans. Ind. Electron. 56(9), 3772–3781 (2009)

    Article  Google Scholar 

  21. Yashiro, D., Ohnishi, K.: Multirate sampling method for bilateral control with communication bandwidth constraint. In: Proc. IEEE Int. Conf. Ind. Technol, pp. 1197–1202 (2009)

    Google Scholar 

  22. Yashiro, D., Ohnishi, K.: Performance analysis of bilateral control system with communication bandwidth constraint. IEEE Trans. Ind. Electron. 58(2), 436–443 (2011)

    Article  Google Scholar 

  23. Lewis, F.L., Jagannathan, S., Yesildirek, A.: Neural Network Control of Robot Manipulators and Nonlinear Systems. Taylor and Francis, London (1999)

    Google Scholar 

  24. Sadegh, N.: A perceptron network for functional identification and control of nonlinear systems. IEEE Trans. Neural Netw. 4(6), 982–988 (1993)

    Article  Google Scholar 

  25. Igelnik, B., Pao, Y.-H.: Stochastic choice of basis functions in adaptive function approximation and the Functional-Link net. IEEE Trans. Neural Netw. 6(6), 1320–1329 (1995)

    Article  Google Scholar 

  26. Craig, J.: Adaptive Control of Mechanical Manipulators. Addison–Wesley, Reading (1985)

    Google Scholar 

  27. Anderson, R.J., Spong, M.W.: Asymptotic stability for force reflecting teleoperators with time delay. Int. J. Robot. Res. 11, 135–149 (1992)

    Article  Google Scholar 

  28. Khalil, H.K.: Nonlinear System. Prentice Hall, New York (2002)

    Google Scholar 

  29. Lawn, C.A., Hannaford, B.: Performance testing of passive communication and control in teleoperation with time delay. In: Proceedings IEEE ICRA, pp. 776–783 (1993)

    Google Scholar 

  30. Huang, J.-Q., Lewis, F.L.: Neural-network predictive control for nonlinear dynamic systems with time-delay. IEEE Trans. Neural Netw. 14(2), 377–389 (2003)

    Article  Google Scholar 

  31. Salcudean, S.E., Zhu, M., Zhu, W.H., Hashtrudi-Zaad, K.: Transparent bilateral teleoperation under position and rate control. Int. J. Robot. Res. 19(12), 1185–1202 (2000)

    Article  Google Scholar 

  32. Talebi, H.A., Khorasani, K., Tafazoli, S.: A recurrent neural-network-based sensor and actuator fault detection and isolation for nonlinear systems with application to the satellite’s attitude control subsystem. IEEE Trans. Neural Networks 20(1) 45–60 (2009), ISSN:1045-9227

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Forouzantabar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Forouzantabar, A., Talebi, H.A. & Sedigh, A.K. Adaptive neural network control of bilateral teleoperation with constant time delay. Nonlinear Dyn 67, 1123–1134 (2012). https://doi.org/10.1007/s11071-011-0057-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-011-0057-8

Keywords

Navigation