Skip to main content
Log in

Global nonlinear distributed-parameter model of parametrically excited piezoelectric energy harvesters

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

A global nonlinear distributed-parameter model for a piezoelectric energy harvester under parametric excitation is developed. The harvester consists of a unimorph piezoelectric cantilever beam with a tip mass. The derived model accounts for geometric, inertia, piezoelectric, and fluid drag nonlinearities. A reduced-order model is derived by using the Euler–Lagrange principle and Gauss law and implementing a Galerkin discretization. The method of multiple scales is used to obtain analytical expressions for the tip deflection, output voltage, and harvested power near the first principal parametric resonance. The effects of the nonlinear piezoelectric coefficients, the quadratic damping, and the excitation amplitude on the output voltage and harvested electrical power are quantified. The results show that a one-mode approximation in the Galerkin approach is not sufficient to evaluate the performance of the harvester. Furthermore, the nonlinear piezoelectric coefficients have an important influence on the harvester’s behavior in terms of softening or hardening. Depending on the excitation frequency, it is determined that, for small values of the quadratic damping, there is an overhang associated with a subcritical pitchfork bifurcation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gurav, S.P., Kasyap, A., Sheplak, M., Cattafesta, L., Haftka, R.T., Goosen, J.F.L., Van Keulen, F.: Uncertainty-based design optimization of a micro piezoelectric composite energy reclamation device. In: Proc. 10th AIAA/ISSSMO Multidisciplinary Analysis and Optimization Conference, pp. 3559–3570 (2004)

    Google Scholar 

  2. Muralt, P.: Ferroelectric thin films for micro-sensors and actuators: a review. J. Micromech. Microeng. 10, 136–146 (2000)

    Article  Google Scholar 

  3. Zhou, W., Liao, W.H., Li, W.J.: Analysis design of a self-powered piezoelectric microaccelerometer. In: Proc. Smart Structures and Materials Conference, pp. 233–240. SPIE, Bellingham (2005)

    Google Scholar 

  4. Inman, D.J., Grisso, B.L.: Towards autonomous sensing. In: Proc. Smart Structures and Materials Conference, p. 61740T. SPIE, Bellingham (2006)

    Google Scholar 

  5. Roundy, S., Wright, P.K.: A piezoelectric vibration-based generator for wireless electronics. Smart Mater. Struct. 16, 809–823 (2005)

    Google Scholar 

  6. Capel, I.D., Dorrell, H.M., Spencer, E.P., Davis, M.W.: The amelioration of the suffering associated with spinal cord injury with subperception transcranial electrical stimulation. Spinal Cord 41, 109–117 (2003)

    Article  Google Scholar 

  7. Priya, S., Popa, D., Lewis, F.: Energy efficient mobile wireless sensor networks. In: Proc. ASME International Mechanical Engineering Congress Exposition, Chicago, IL (2006)

    Google Scholar 

  8. Williams, C.B., Yates, R.B.: Analysis of a micro-electric generator for microsystems. Sens. Actuators A, Phys. 52, 8–11 (1996)

    Article  Google Scholar 

  9. Arnold, D.: Review of microscale magnetic power generation. IEEE Trans. Magn. 43, 3940–3951 (2007)

    Article  Google Scholar 

  10. Mitcheson, P., Miao, P., Start, B., Yeatman, E., Holmes, A., Green, T.: MEMS electrostatic micro-power generator for low frequency operation. Sens. Actuators A, Phys. 115, 523–529 (2004)

    Article  Google Scholar 

  11. Anton, S.R., Sodano, H.A.: A review of power harvesting using piezoelectric materials (2003–2006). Smart Mater. Struct. 16, 1–21 (2007)

    Article  Google Scholar 

  12. Cook-Chennault, K.A., Thambi, N., Sastry, A.M.: Powering MEMS portable devices-a review of non-regenerative and regenerative power supply systems with emphasis on piezoelectric energy harvesting systems. Smart Mater. Struct. 17, 043001 (2008)

    Article  Google Scholar 

  13. Beeby, S.P., Tudor, M.J., White, N.M.: Energy harvesting vibration sources for microsystems applications. Meas. Sci. Technol. 17, 175–195 (2006)

    Article  Google Scholar 

  14. Sodano, H.A., Inman, D.J., Park, G.: A review of power harvesting from vibration using piezoelectric materials. Shock Vib. Dig. 36, 197–205 (2004)

    Article  Google Scholar 

  15. Priya, S.: Advances in energy harvesting using low profile piezoelectric transducers. J. Electroceram. 19, 167–184 (2007)

    Article  Google Scholar 

  16. Sodano, H., Park, G., Inman, D.J.: Estimation of electric charge output for piezoelectric energy harvesting. Strain 40, 49–58 (2004)

    Article  Google Scholar 

  17. Erturk, A., Inman, D.J.: An experimentally validated bimorph cantilever model for piezoelectric energy harvesting from base excitations. Smart Mater. Struct. 18, 025009 (2009)

    Article  Google Scholar 

  18. Erturk, A., Inman, D.J.: On mechanical modeling of cantilevered piezoelectric vibration energy harvesters. J. Intell. Mater. Syst. Struct. 19, 1311–1325 (2008)

    Article  Google Scholar 

  19. Erturk, A., Inman, D.J.: A distributed parameter electromechanical model for cantilevered piezoelectric energy harvesters. J. Vib. Acoust. 130, 041002 (2008)

    Article  Google Scholar 

  20. Abdelkefi, A., Nayfeh, A.H., Hajj, M.R.: Modeling and analysis of piezoaeroelastic energy harvesters. Nonlinear Dyn. (2011). doi:10.1007/s11071-011-0035-1

    Google Scholar 

  21. Daqaq, M.F., Stabler, C., Qaroush, Y., Seuaciuc-Osorio, T.: Investigation of power harvesting via parametric excitations. J. Intell. Mater. Syst. Struct. 20, 545–557 (2009)

    Article  Google Scholar 

  22. Nayfeh, A.H., Mook, D.T.: Nonlinear Oscillations. Wiley Series in Nonlinear Science. Wiley, New York (1979)

    MATH  Google Scholar 

  23. Anderson, T.J., Nayfeh, A.H., Balachandar, B.: Experimental verification of the importance of the nonlinear curvature in the response of a cantilever beam. J. Vib. Acoust. 118, 21–28 (1996)

    Article  Google Scholar 

  24. Arafat, H.N., Nayfeh, A.H., Chin, C.M.: Nonlinear nonplanar dynamics of parametrically excited cantilever beams. Nonlinear Dyn. 15, 31–61 (1997)

    Article  Google Scholar 

  25. Nayfeh, A.H.: Nonlinear Interactions. Wiley Series in Nonlinear Science. Wiley, New York (2000)

    MATH  Google Scholar 

  26. Nayfeh, A.H., Pai, P.F.: Linear and Nonlinear Structural Mechanics. Wiley Series in Nonlinear Science. Wiley, New York (2004)

    Book  MATH  Google Scholar 

  27. IEEE Standard on Piezoelectricity (1987)

  28. Guyomar, D., Aurelle, N., Eyraud, L.: Piezoelectric ceramics nonlinear behavior Application to Langevin transducer. J. Phys., III 1, 1197–1208 (1997)

    Google Scholar 

  29. Guyomar, D., Aurelle, N., Richard, C., Gonnard, P., Eyraud, L.: Nonlinearities in Langevin transducers. In: Proc. IEEE, pp. 1051–0117 (1994)

    Google Scholar 

  30. Nayfeh, A.H., Lacarbonara, W.: On the discretization of distributed-parameter systems with quadratic and cubic nonlinearities. Nonlinear Dyn. 13, 203–220 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  31. Nayfeh, A.H., Lacarbonara, W.: On the discretization of spatially continuous systems with quadratic and cubic nonlinearities. JSME Int. J. 41, 2–23 (1998)

    Google Scholar 

  32. Nayfeh, A.H., Arafat, H.N., Chin, C.M., Lacarbonara, W.: Multimode interactions in suspended cables. J. Vib. Control 8, 337–387 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  33. Lacarbonara, W., Rega, G., Nayfeh, A.H.: Resonant nonlinear normal modes. Part I: Analytical treatment for one-dimensional structural systems. Int. J. Non-Linear Mech. 38, 851–872 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  34. Nayfeh, A.H.: Reduced-order models of weakly nonlinear spatially continuous systems. Nonlinear Dyn. 16, 105–125 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  35. Nayfeh, A.H.: Perturbation Methods. Wiley Series in Nonlinear Science. Wiley, New York (1973)

    MATH  Google Scholar 

  36. Nayfeh, A.H.: Introduction to Perturbation Techniques. Wiley Series in Nonlinear Science. Wiley, New York (1981)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. R. Hajj.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abdelkefi, A., Nayfeh, A.H. & Hajj, M.R. Global nonlinear distributed-parameter model of parametrically excited piezoelectric energy harvesters. Nonlinear Dyn 67, 1147–1160 (2012). https://doi.org/10.1007/s11071-011-0059-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-011-0059-6

Keywords

Navigation