Skip to main content
Log in

Integrated mechanical and control design of underactuated multibody systems

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Multibody systems are called underactuated if they have less control inputs than degrees of freedom, e.g. due to passive joints or body flexibility. For trajectory tracking of underactuated multibody systems often advanced modern nonlinear control techniques are necessary. The analysis of underactuated multibody systems might show that they possess internal dynamics. Feedback linearization is only possible if the internal dynamics remain bounded, i.e. the system is minimum phase. Also feed-forward control design for minimum phase systems is much easier to realize than for non-minimum phase systems. However, often the initial design of an underactuated multibody system is non-minimum phase. Therefore, in this paper a procedure for integrated mechanical and control design is proposed such that minimum phase underactuated multibody systems are obtained. Thereby an optimization-based design process is used, whereby the geometric dimensions and mass distribution of the multibody systems are altered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Agrawal, S., Sangwan, V.: Differentially flat designs of underactuated open-chain planar robots. IEEE Trans. Robot. 24, 1445–1451 (2008)

    Article  Google Scholar 

  2. Ast, A., Eberhard, P.: Flatness-based control of parallel kinematics using multibody systems—simulation and experimental results. Arch. Appl. Mech. 76, 181–197 (2006)

    Article  MATH  Google Scholar 

  3. Blajer, W., Kolodziejczyk, K.: A geometric approach to solving problems of control constraints: theory and a DAE framework. Multibody Syst. Dyn. 11, 343–364 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  4. Brockett, R.: Feedback invarianta for nonlinear systems. In: Proceedings of the 7th IFAC World Congress, Helsinki (1978)

    Google Scholar 

  5. De Luca, A.: Trajectory control of flexible manipulators. In: Siciliano, B., Valavanis, K. (eds.) Control Problems in Robotics and Automation, pp. 83–104. Springer, London (1998)

    Chapter  Google Scholar 

  6. Devasia, S., Chen, D., Paden, B.: Nonlinear inversion-based output tracking. IEEE Trans. Autom. Control 41, 930–942 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  7. Isidori, A.: Nonlinear Control Systems. Springer, London (1995)

    MATH  Google Scholar 

  8. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of the International Conference on Neural Networks, Perth, pp. 1942–1948 (1995)

    Google Scholar 

  9. Kennedy, J., Eberhart, R.: Swarm Intelligence. Morgan Kaufmann, San Francisco (2001)

    Google Scholar 

  10. Khalil, H.: Nonlinear Systems. Prentice Hall, Upper Saddle River (2002)

    MATH  Google Scholar 

  11. Li, Z., Yang, Y., Wang, S.: Adaptive dynamic coupling control of hybrid joints of human-symbiotic wheeled mobile manipulators with unmodelled dynamics. Int. J. Soc. Robot. 2, 109–120 (2010)

    Article  Google Scholar 

  12. Moallem, M., Patel, R., Khorasani, K.: Flexible-link Robot Manipulators: Control Techniques and Structural Design. Springer, London (2000)

    MATH  Google Scholar 

  13. Sastry, S.: Nonlinear Systems: Analysis, Stability and Control. Springer, New York (1999)

    MATH  Google Scholar 

  14. Sedlaczek, K.: Zur Topologieoptimierung von Mechanismen und Mehrkörpersystemen. Schriften aus dem Institut für Technische und Numerische Mechanik der Universität Stuttgart. Shaker Verlag, Aachen (2007) (In German)

    Google Scholar 

  15. Sedlaczek, K., Eberhard, P.: Using augmented Lagrangian particle swarm optimization for constrained problems in engineering. Struct. Multidiscip. Optim. 32, 277–286 (2006)

    Article  Google Scholar 

  16. Seifried, R.: Optimization-based design of feedback linearizable underactuated multibody systems. In: Proceedings of the ECCOMAS Thematic Conference Multibody Dynamics 2009, Warsaw (2009). Paper ID 121

    Google Scholar 

  17. Seifried, R.: Optimization-based design of minimum phase underactuated multibody systems. In: Blajer, W., Arczewski, K., Fraczek, J., Wojtyra, M. (eds.) Multibody Dynamics: Computational Methods and Applications. Computational Methods in Applied Sciences, vol. 23, pp. 261–282. Springer, Berlin (2011)

    Google Scholar 

  18. Seifried, R., Held, A., Dietmann, F.: Analysis of feed-forward control design approaches for flexible multibody systems. J. Syst. Des. Dyn. 5, 429–440 (2011)

    Google Scholar 

  19. Seifried, R.: Two approaches for feedforward control and optimal design of underactuated multibody systems. Multibody Syst. Dyn. doi:10.1007/s11044-011-9261-z

  20. Seifried, R., Eberhard, P.: Design of feed-forward control for underactuated multibody systems with kinematic redundancy. In: Ulbrich, H., Ginzinger, L. (eds.) Motion and Vibration Control: Selected Papers from MOVIC 2008, pp. 275–284. Springer, Munich (2009)

    Chapter  Google Scholar 

  21. Skogestad, S., Postlethwaite, R.: Multivariable Feedback Control. Wiley, Chichester (2005)

    Google Scholar 

  22. Soltine, J.-J., Li, W.: Applied Nonlinear Control. Prentice Hall, Englewood Cliffs (1991)

    Google Scholar 

  23. Spong, M., Hutchinson, S., Vidyasagar, M.: Robot Modeling and Control. Wiley, Hoboken (2006)

    Google Scholar 

  24. Taylor, D., Li, S.: Stable inversion of continuous-time nonlinear systems by finite-difference methods. IEEE Trans. Autom. Control 47, 537–542 (2002)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Seifried.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Seifried, R. Integrated mechanical and control design of underactuated multibody systems. Nonlinear Dyn 67, 1539–1557 (2012). https://doi.org/10.1007/s11071-011-0087-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-011-0087-2

Keywords

Navigation