Skip to main content
Log in

Investigation of Painlevé’s paradox and dynamic jamming during mechanism sliding motion

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The paradox of Painlevé occurs when the dynamics of a sliding rigid body has solution inconsistency. When approaching a configuration of inconsistency, the contact forces and accelerations may grow unbounded in finite time, a scenario which is called dynamic jamming. Painlevé’s paradox was originally formulated for a sliding rod with uniform mass distribution, for which inconsistency occurs only under unrealistically high contact friction conditions. This paper shows that when the sliding rod is replaced by a sliding mechanism, the dynamic jamming predicted by Painlevé’s paradox can occur under relatively low friction. The paper proposes a particular mechanism, called IPOS, which consists of an inverted pendulum hinged to a plate that slides on an inclined plane (IPOS = Inverted Pendulum On a Slider). The IPOS mechanism can reach solution inconsistency under practical friction conditions, and can thus be used to experimentally validate the theoretical predictions. The conditions under which dynamic jamming occurs in the IPOS mechanism dynamics are explicitly derived, and numerical simulations illustrate the feasibility of dynamic jamming experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anitescu, M., Potra, F.A.: Formulating dynamic multi-rigid-body contact problems with friction as solvable linear complementarity problems. Nonlinear Dyn. 14, 231–247 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  2. Brogliato, B.: Nonsmooth Mechanics. Springer, Berlin (1999)

    Book  MATH  Google Scholar 

  3. Chatterjee, A., Ruina, A.: A new algebraic rigid body collision law based on impulse space considerations. J. Appl. Mech. 65(4), 939–951 (1998)

    Article  Google Scholar 

  4. Collins, S.H., Wisse, M., Ruina, A.: A 3-D passive dynamic walking robot with two legs and knees. Int. J. Robot. Res. 20, 607–615 (2001)

    Article  Google Scholar 

  5. diBernardo, M., Budd, C.J., Champneys, A.R., Kowalczyk, P.: Piecewise-smooth Dynamical Systems: Theory and Applications. Springer, Berlin (2007)

    Google Scholar 

  6. Dupont, P.E.: The effect of Coulomb friction on the existence and uniqueness of the forward dynamics problem. In: IEEE Int. Conf. on Robotics and Automation, pp. 1442–1447 (1992)

    Google Scholar 

  7. Dupont, P.E., Yamajako, S.P.: Jamming and wedging in constrained rigid-body dynamics. In: Proc. IEEE Int. Conf. on Robotics and Automation, San Diego, CA, USA, pp. 2349–2354 (1994)

    Google Scholar 

  8. Erdmann, M.A.: An exploration of nonprehensile two-palm manipulation. Int. J. Robot. Res. 17(5), 485–503 (1998)

    Article  Google Scholar 

  9. Filippov, A.: Differential Equations with Discontinuous Right-Hand Sides. Kluwer Academic, Norwell (1988)

    MATH  Google Scholar 

  10. Génot, F., Brogliato, B.: New results on Painlevé paradoxes. Eur. J. Mech. A, Solids 18(4), 653–677 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  11. Goebel, R., Sanfelice, R.G., Teel, A.R.: Hybrid dynamical systems. IEEE Control Syst. Mag. 29(2), 28–93 (2009)

    Article  MathSciNet  Google Scholar 

  12. Hall, B., Champneys, A.: Why does chalk squeak? Technical report, Dept. of Eng. Math., University of Bristol (2009), in www.enm.bris.ac.uk/teaching/projects/2008_09/bh5217/download/Chalk_Report.pdf

  13. Hurmuzlu, Y., Génot, F., Brogliato, B.: Modeling, stability and control of biped robots—a general framework. Automatica 40(10), 1647–1664 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  14. Kraus, P.R., Kumar, V., Dupont, P.: Analysis of frictional contact models for dynamic simulation. In: IEEE Int. Conf. on Robotics and Automation, Leuven, Belgium, pp. 2822–2827 (1998)

    Google Scholar 

  15. Leine, R.I., Brogliato, B., Nijmeijer, H.: Periodic motion and bifurcations induced by the Painlevé paradox. Eur. J. Mech. A, Solids 21, 869–896 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  16. Leine, R.I., Nijmeijer, H.: Dynamics and bifurcations of non-smooth mechanical systems. Springer, Berlin (2004)

    MATH  Google Scholar 

  17. Liu, C., Zhao, Z., Chen, B.: The bouncing motion appearing in a robotic system with unilateral constraint. Nonlinear Dyn. 49, 217–232 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  18. Lohmeier, S., Buschmann, T., Ulbrich, H., Pfeiffer, F.: Humanoid robot LOLA—research platform for high-speed walking. In: Ulbrich, H., Ginzinger, L. (eds.) Motion and Vibration Control: Selected Papers from MOVIC 2008, pp. 221–230. Springer, Berlin (2009)

    Chapter  Google Scholar 

  19. Lotstedt, P.: Coulomb friction in two-dimensional rigid body systems. Z. Angew. Math. Mech. 61, 605–615 (1981)

    Article  MathSciNet  Google Scholar 

  20. Lynch, K.M., Mason, M.T.: Dynamic nonprehensile manipulation: Controllability, planning, and experiments. Int. J. Robot. Res. 18(1), 64–92 (1999)

    Google Scholar 

  21. Mason, M.T., Wang, Y.: On the inconsistency of rigid-body frictional planar mechanics. In: IEEE Int. Conf. on Robotics and Automation, Philadelphia, PA, USA, pp. 524–528 (1988)

    Google Scholar 

  22. Meltz, D., Or, Y., Rimon, E.: Experimental verification and graphical characterization of dynamic jamming in frictional rigid-body mechanics. In: IEEE Int. Conf. on Robotics and Automation, Rome, Italy, pp. 580–585 (2007)

    Google Scholar 

  23. Moreau, J.J.: Unilateral contact and dry friction in finite freedom dynamics. In: Nonsmooth Mechanics and Applications. CISM Courses and Lectures, vol. 302, pp. 1–82. Springer, Berlin (1988)

    Google Scholar 

  24. Nordmark, A., Dankowicz, H., Champneys, A.: Discontinuity-induced bifurcations in systems with impacts and friction: Discontinuities in the impact law. Int. J. Non-Linear Mech. 44, 1011–1023 (2009)

    Article  MATH  Google Scholar 

  25. Nordmark, A., Dankowicz, H., Champneys, A.: Friction-induced reverse chatter in rigid-body mechanisms with impacts. IMA J. Appl. Math. 76(1), 85–119 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  26. Or, Y., Ames, A.D.: Stability of Zeno equilibria in Lagrangian hybrid systems. In: Proc. IEEE Conf. on Decision and Control, Cancun, Mexico, pp. 2770–2775 (2008)

    Google Scholar 

  27. Painlevé, P.: Sur les lois du frottement de glissement. C. R. Acad. Sci. Paris 121, 112–115 (1895)

    Google Scholar 

  28. Pang, J.-S.: Frictional contact models with local compliance: Semismooth formulation. Z. Angew. Math. Mech. 88(6), 454–471 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  29. Pang, J.S., Trinkle, J.C.: Complementarity formulations and existence of solutions of dynamic multi-rigid-body contact problems with Coulomb friction. Math. Program. 74, 199–226 (1996)

    Article  MathSciNet  Google Scholar 

  30. Pfeiffer, F., Glocker, C.: Multibody Dynamics with Unilateral Contacts. Wiley, New York (1996)

    Book  MATH  Google Scholar 

  31. Segev, R., Ailon, A.: A geometrical setting for the newtonian mechanics of robots. J. Franklin Inst. 322(3), 173–183 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  32. Song, P., Pang, J.-S., Kumar, V.: A semi-implicit time-stepping model for frictional compliant contact problems. Int. J. Numer. Methods Eng. 60(13), 2231–2261 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  33. Stewart, D.E., Trinkle, J.C.: An implicit time-stepping scheme for rigid body dynamics with inelastic collisions and Coulomb friction. Int. J. Numer. Methods Eng. 39, 2673–2691 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  34. Stewart, D.E.: Convergence of a time-stepping scheme for rigid body dynamics and resolution of Painlevé’s problem. Arch. Ration. Mech. Anal. 145(3), 215–260 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  35. Stewart, D.E.: Rigid-body dynamics with friction and impact. SIAM Rev. 41(1), 3–39 (2000)

    Article  Google Scholar 

  36. Stronge, W.J.: Impact Mechanics. Cambridge University Press, Cambridge (1979)

    Google Scholar 

  37. Wang, Y., Mason, M.T.: Two-dimensional rigid body collisions with friction. J. Appl. Mech. 10, 292–352 (1993)

    Google Scholar 

  38. Westervelt, E.R., Grizzle, J.W., Chevallereau, C., Choi, J.H., Morris, B.: Feedback Control of Dynamic Bipedal Robot Locomotion. CRC Press, Boca Raton (2007)

    Book  Google Scholar 

  39. Wilms, E.V., Cohen, H.: The occurrence of Painlevé’s paradox in the motion of a rotating shaft. J. Appl. Mech. 64, 1008–1010 (1997)

    Article  MATH  Google Scholar 

  40. Zhang, J., Johansson, K.H., Lygeros, J., Sastry, S.: Zeno hybrid systems. Int. J. Robust Nonlinear Control 1(2), 435–451 (2001)

    Article  MathSciNet  Google Scholar 

  41. Zhao, Z., Liu, C., Ma, W., Chen, B.: Experimental investigation of the Painlevé paradox in a robotic system. J. Appl. Mech. 75, 041006 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yizhar Or.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Or, Y., Rimon, E. Investigation of Painlevé’s paradox and dynamic jamming during mechanism sliding motion. Nonlinear Dyn 67, 1647–1668 (2012). https://doi.org/10.1007/s11071-011-0094-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-011-0094-3

Keywords

Navigation