Skip to main content

Advertisement

Log in

Optimal design of multi-parametric nonlinear systems using a parametric continuation based Genetic Algorithm approach

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper, a procedure for the optimal design of multi-parametric nonlinear systems is presented which makes use of a parametric continuation strategy based on simple shooting method. Shooting method is used to determine the periodic solutions of the nonlinear system and multi-parametric continuation is then employed to trace the change in the system dynamics as the design parameters are varied. The information on the variation of system dynamics with the value of the parameter vector is then used to find out the exact parameter values for which the system attains the required response. This involves a multi-parametric optimisation procedure which is accomplished by the coupling of parameter continuation with different search algorithms. Genetic Algorithm as well as Gradient Search methods are coupled with parametric continuation to develop an optimisation scheme. Furthermore, in the coupling of continuation and Genetic Algorithm, a “norm-minimising” strategy is developed and made use of minimising the use of continuation. The optimisation procedure developed is applied to the Duffing oscillator for the minimisation of the system acceleration with nonlinear stiffness and damping coefficient as the parameters and the results are reported. It is also briefly indicated how the proposed method can be successfully used to tune nonlinear vibration absorbers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ficken, F.: The continuation method for nonlinear functional equations. Comm. Pure Appl. Math. 4, 435–456 (1951)

    Article  MathSciNet  MATH  Google Scholar 

  2. Lahaye, M.E.: Solution of system of transcendental equations. Bull. Cl. Sci., Acad. R. Belg. 5, 805–822 (1948)

    Google Scholar 

  3. Davidenko, D.F.: On the approximate solution of systems of nonlinear equations. Ukr. Mat. Zh. 5, 196–206 (1953)

    MathSciNet  MATH  Google Scholar 

  4. Morozov, N.F.: Nonlinear problems in theory of thin plates. Vestn. Leningr. Univ. 19, 100–124 (1958)

    Google Scholar 

  5. Kubicek, M., Marek, M.: Computational Methods in Bifurcation Theory and Dissipative Structures. Springer, New York (1983)

    MATH  Google Scholar 

  6. Seydel, R.: From Equilibrium to Chaos: Practical Stability and Bifurcation Analysis. Elsevier, New York (1988)

    MATH  Google Scholar 

  7. Grigolyuk, E.I., Shalashilin, V.I.: Problems of Nonlinear Deformation. Kluwer Academic, Dordrecht (1991)

    Book  Google Scholar 

  8. Vannucci, P., Cochelin, B., Damil, N., Potier-Ferry, M.: An asymptotic numerical method to compute bifurcation branches. Int. J. Numer. Methods Eng. 41, 1365–1389 (1997)

    Article  Google Scholar 

  9. Cochelin, B.: A path following technique via an asymptotic numerical method. Comput. Struct. 53, 1181–1192 (1994)

    Article  MATH  Google Scholar 

  10. Noor, A.K., Peters, J.M.: Tracing post limit paths with reduced basis technique. Computer Methods in Applied Mechanics 28, 217–240 (1981)

    Article  MATH  Google Scholar 

  11. Padmanabhan, C., Singh, R.: Analysis of periodically excited nonlinear systems by a parametric continuation method. J. Sound Vib. 184, 35–58 (1995)

    Article  Google Scholar 

  12. Padmanabhan, C., Singh, R.: Dynamic analysis of a piecewise nonlinear system subjected to dual harmonic excitation using parametric continuation. J. Sound Vib. 184, 767–799 (1995)

    Article  MATH  Google Scholar 

  13. Noah, S.T., Sundararajan, P.: Dynamics of forced nonlinear systems using shooting/arc length continuation method—application to rotor systems. ASME J. Vib. Acoust. 119, 9–20 (1997)

    Article  Google Scholar 

  14. Shalashilin, V.I., Kuznetsov, E.B.: Parametric Continuation and Optimal Parameterization in Applied Mathematics and Mechanics. Kluwer Academic, Dordrecht (2003)

    Google Scholar 

  15. Burton, T.D.: Introduction to Dynamic System Analysis. McGraw-Hill, New York (1994)

    Google Scholar 

  16. Goldberg, D.E.: Genetic Algorithms in Search, Optimisation and Machine Learning. Addison-Wesley, Reading (1989)

    Google Scholar 

  17. Rao, S.S.: Engineering Optimization: Theory and Practice. New Age, New Delhi (1996)

    Google Scholar 

  18. Nayfeh, A.H., Mook, D.T.: Nonlinear Oscillations. Wiley, New York (1979)

    MATH  Google Scholar 

  19. Den Hartog, J.P.: Mechanical Vibrations. Dover, New York (1985)

    Google Scholar 

  20. Pipes, L.: Analysis of a nonlinear dynamic vibration absorber. J. Appl. Mech. 20, 515–518 (1953)

    MATH  Google Scholar 

  21. Hunt, J., Nissen, J.C.: The broadband dynamic vibration absorber. J. Sound Vib. 83, 573–578 (1982)

    Article  Google Scholar 

  22. Asami, T., Nishihara, O.: Closed form exact solution to HINF optimization of dynamic vibration absorbers. J. Vib. Acoust. 125, 381–411 (2003)

    Article  Google Scholar 

  23. Viguie, R., Kerschen, G.: Nonlinear vibration absorber coupled to a nonlinear primary system: a tuning methodology. J. Sound Vib. 326, 780–793 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bipin Balaram.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Balaram, B., Narayanan, M.D. & Rajendrakumar, P.K. Optimal design of multi-parametric nonlinear systems using a parametric continuation based Genetic Algorithm approach. Nonlinear Dyn 67, 2759–2777 (2012). https://doi.org/10.1007/s11071-011-0187-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-011-0187-z

Keywords

Navigation