Skip to main content

Advertisement

Log in

Enhancement of power harvesting from piezoaeroelastic systems

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

We investigate the effects of varying the eccentricity between the gravity axis and the elastic axis on the level of energy harvested from a piezoaeroelastic energy harvester consisting of a pitching and plunging rigid airfoil supported by nonlinear springs. The normal form of the dynamics of the harvester near the Hopf bifurcation is used to determine the critical nonlinear coefficients of the springs and maximize the harvested power for different eccentricities. Two configurations are evaluated in terms of the power generated from limit cycle oscillations and a range of operating wind speeds. The impact of the load resistance on the harvested power is also assessed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Inman, D.J., Grisso, B.L.: Towards autonomous sensing. In: Proc. Smart Structures and Materials Conference, p. 61740. SPIE, Bellingham (2006)

    Google Scholar 

  2. Roundy, S., Wright, P.K.: A piezoelectric vibration-based generator for wireless electronics. J, Smart Mater. Struct. 16, 809–823 (2005)

    Google Scholar 

  3. Muralt, P.: Ferroelectric thin films for micro-sensors and actuators: a review. J. Micromech. Microeng. 10, 136–146 (2000)

    Article  Google Scholar 

  4. Gurav, S.P., Kasyap, A., Sheplak, M., Cattafesta, L., Haftka, R.T., Goosen, J.F.L., Van Keulen, F.: Uncertainty-based design optimization of a micro piezoelectric composite energy reclamation device. In: 10th AIAA/ISSSMO Multidisciplinary Analysis and Optimization Conference, Albany, NY, pp. 3559–3570 (2004)

    Google Scholar 

  5. Zhou, W., Liao, W.H., Li, W.J.: Analysis design of a self-powered piezoelectric microaccelerometer. In: Proc. Smart Structures and Materials Conference, pp. 233–240. SPIE, Bellingham (2005)

    Google Scholar 

  6. Capel, I.D., Dorrell, H.M., Spencer, E.P., Davis, M.W.: The amelioration of the suffering associated with spinal cord injury with subperception transcranial electrical stimulation. Spinal Cord 41, 109–117 (2003)

    Article  Google Scholar 

  7. Priya, S., Popa, D., Lewis, F.: Energy Efficient Mobile Wireless Sensor Networks. In: Proc. ASME International Mechanical Engineering Congress Exposition, Chicago, IL (2006)

    Google Scholar 

  8. Arnold, D.: Review of microscale magnetic power generation. IEEE Trans. Magn. 43, 3940–3951 (2007)

    Article  Google Scholar 

  9. Mitcheson, P., Miao, P., Start, B., Yeatman, E., Holmes, A., Green, T.: MEMS electrostatic micro-power generator for low frequency operation. Sens. Actuators A, Phys. 115, 523–529 (2004)

    Article  Google Scholar 

  10. Anton, S.R., Sodano, H.A.: A review of power harvesting using piezoelectric materials (2003–2006). Journal of Smart Materials and Structures 16, 1–21 (2007)

    Article  Google Scholar 

  11. Cook-Chennault, K.A., Thambi, N., Sastry, A.M.: Powering MEMS portable devices-a review of non-regenerative and regenerative power supply systems with emphasis on piezoelectric energy harvesting systems. J. Smart Mater. Struct. 17, 043001 (2008)

    Article  Google Scholar 

  12. Beeby, S.P., Tudor, M.J., White, N.M.: Energy harvesting vibration sources for microsystems applications. Meas. Sci. Technol. 17, 175–195 (2006)

    Article  Google Scholar 

  13. Abdelkefi, A., Najar, F., Nayfeh, A.H., Ben Ayed, S.: An energy harvester using piezoelectric cantilever beams undergoing coupled bending-torsion vibrations. J. Smart Mater. Struct. (2011, accepted) doi:10.1088/0964-1726/20/11/11s007

  14. Abdelkefi, A., Nayfeh, A.H., Hajj, M.R.: Global nonlinear distributed-parameter model of parametrically excited piezoelectric energy harvesters. Nonlinear Dyn. (2011). doi:10.1007/s11071-011-0059-6

  15. Sodano, H.A., Inman, D.J., Park, G.: A review of power harvesting from vibration using piezoelectric materials. Shock Vib. Dig. 36, 197–205 (2004)

    Article  Google Scholar 

  16. Erturk, A., Inman, D.J.: An experimentally validated bimorph cantilever model for piezoelectric energy harvesting from base excitations. J. Smart Mater. Struct. 18, 025009 (2009)

    Article  Google Scholar 

  17. Abdelkefi, A., Nayfeh, A.H., Hajj, M.R.: Effects of nonlinear piezoelectric coupling on energy harvesters under direct excitation. Nonlinear Dyn. (2011). doi:10.1007/s11071-011-0064-9

  18. Bryant, M., Garcia, E.: Energy harvesting: a key to wireless sensor nodes. Proc. SPIE 7493, 74931W (2009). doi:10.1117/12.845784

    Article  Google Scholar 

  19. Bryant, M., Garcia, E.: Development of an aeroelastic vibration power harvester. Proc. SPIE 7288, 728812 (2009). doi:10117/12.815785

    Article  Google Scholar 

  20. Erturk, A., Vieira, W.G.R., De Marqui, C., Inman, D.J.: On the energy harvesting potential of piezoaeroelastic systems. Appl. Phys. Lett. 96, 184103 (2010)

    Article  Google Scholar 

  21. De Marqui, C., Erturk, A., Inman, D.J.: Piezoaeroelastic modeling and analysis of a generator wing with continuous and segmented electrodes. J. Intell. Mater. Syst. Struct. 21, 983–993 (2010)

    Article  Google Scholar 

  22. Abdelkefi, A., Nayfeh, A.H., Hajj, M.R.: Modeling and analysis of piezoaeroelastic energy harvesters. Nonlinear Dyn. (2011). doi:10.1007/s11071-011-0035-1

  23. Abdelkefi, A., Nayfeh, A.H., Hajj, M.R.: Design of piezoaeroelastic energy harvesters. Nonlinear Dyn. (2011, submitted). doi:10.1007/s11071-011-02333-x

  24. Strganac, T.W., Ko, J., Thompson, D.E., Kurdila, A.J.: Identification and control of limit cycle oscillations in aeroelastic systems. In: Proceedings of the 40th AIAA/ASME/ASCE/AHS/ASC Structrures, Structural Dynamics, and Materials Conference and Exhibit, vol. 3, St. Louis, MO, pp. 99–1463 (1999)

    Google Scholar 

  25. Nayfeh, A.H.: Introduction to Perturbation Techniques. Wiley, New York (1981)

    MATH  Google Scholar 

  26. Nayfeh, A.H.: Method of Normal Forms. Wiley, Berlin (2011)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. R. Hajj.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abdelkefi, A., Nayfeh, A.H. & Hajj, M.R. Enhancement of power harvesting from piezoaeroelastic systems. Nonlinear Dyn 68, 531–541 (2012). https://doi.org/10.1007/s11071-011-0234-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-011-0234-9

Keywords

Navigation