Skip to main content
Log in

Effect of driver behaviours on the formation and dissipation of traffic flow instabilities

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper extends a non-local second order continuum traffic model to take into account the timid or aggressive driver behaviours. Based on the proposed model, we derive analytically the effect of timid or aggressive driver behaviours on the instability of traffic dynamics. Simulation results are presented to show how the timid or aggressive driver behaviours influence the formation and dissipation of stop-and-go waves. It is found theoretically and numerically that aggressive drivers tend to stabilize traffic flow whereas timid drivers tend to destabilize traffic flow.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Brackstone, M., McDonald, M.: Car-following: A historical review. Transp. Res., Part F 2, 181–196 (2000)

    Article  Google Scholar 

  2. Daganzo, C.F.: The cell transmission model, part II: network traffic. Transp. Res., Part B, Methodol. 28, 279–293 (1994)

    Article  Google Scholar 

  3. Daganzo, C.F.: Requiem for second-order fluid approximations of traffic flow. Transp. Res., Part B, Methodol. 29, 277–286 (1995)

    Article  Google Scholar 

  4. Helbing, D.: Improved fluid-dynamic model for vehicular traffic. Phys. Rev. E 51, 3164–3169 (1995)

    Article  Google Scholar 

  5. Helbing, D.: Gas-kinetic derivation of Navier–Stokes-like traffic equations. Phys. Rev. E 53, 2366–2381 (1996)

    Article  MathSciNet  Google Scholar 

  6. Helbing, D., Johansson, A.F.: On the controversy around Daganzo’s requiem for and Aw–Rascle’s resurrection of second-order traffic flow models. Eur. Phys. J. B 69, 549–562 (2009)

    Article  Google Scholar 

  7. Helbing, D., Treiber, M.: Gas-kinetic based traffic flow models explaining observed hysteretic phase transition. Phys. Rev. Lett. 81, 3042–3045 (1998)

    Article  Google Scholar 

  8. Helbing, D., Hennecke, A., Shvetsov, V., Treiber, M.: MASTER: macroscopic traffic simulation based on a gas-kinetic non-local traffic model. Transp. Res., Part B, Methodol. 35(2), 183–211 (2001)

    Article  Google Scholar 

  9. Hoogendoorn, S.P., Bovy, P.H.L.: Multiclass macroscopic traffic flow modelling: a multilane generalization using gas-kinetic theory. In: Proceedings of the 14th International Symposium on Transportation and Traffic Theory, Jarusalem, Israel, pp. 27–50 (1999)

    Google Scholar 

  10. Hoogendoorn, S.P., Bovy, P.H.L.: Generic gas-kinetic traffic systems modeling with applications to vehicular traffic flow. Transp. Res., Part B, Methodol. 35, 317–336 (2001)

    Article  Google Scholar 

  11. Hoogendoorn, S.P., Bovy, P.H.L., van-Lint, H.: Short-term prediction of traffic flow conditions in a multilane multi-class network. In: Transportation and Traffic Theory in the 21st Century, pp. 625–651 (2002)

    Chapter  Google Scholar 

  12. Kerner, B.S., Konhauser, P., Schilke, M.: Deterministic spontaneous appearance of traffic jam in slightly inhomogeneous traffic flow. Phys. Rev. E 51, R6243–R6246 (1995)

    Article  Google Scholar 

  13. Kesting, A., Treiber, M.: How reaction time, update time, and adaptation time influence the stability of traffic flow. Comput.-Aided Civ. Infrastruct. Eng. 23, 125–137 (2008)

    Article  Google Scholar 

  14. Klar, A., Wegener, R.: Enskog-like kinetic models for vehicular traffic. J. Stat. Phys. 87, 91–114 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  15. Laval, J.A.: Hysteresis in traffic flow revisited: An improved measurement method. Transp. Res., Part B, Methodol. 45, 385–391 (2011)

    Article  Google Scholar 

  16. Laval, J.A., Leclercq, L.: A mechanism to describe the formation and propagation of stop-and-go waves in congested freeway traffic. Philos. Trans. R. Soc. Lond. A 368, 4519–4541 (2011)

    Article  MathSciNet  Google Scholar 

  17. Lebacque, J.P.: First order macroscopic traffic flow models: intersection modeling, network modeling. In: Proceedings of the 16th International Symposium on Transportation and Traffic Theory, College Park, MD, USA, pp. 365–386 (2005)

    Google Scholar 

  18. Lighthill, M.H., Whitham, G.B.: On kinematic waves 2: A theory of traffic flow on long, crowded roads. Proc. R. Soc. Lond. A 229, 317–345 (1955)

    Article  MathSciNet  MATH  Google Scholar 

  19. Nelson, P.: A kinetic theory of vehicular traffic and its associated bimodal equilibrium solutions. Transp. Theory Stat. Phys. 24, 383–409 (1995)

    Article  MATH  Google Scholar 

  20. Ngoduy, D.: Operational effects of acceleration lane on main traffic flow at discontinuities. Transportmetrica 4, 195–207 (2008)

    Article  Google Scholar 

  21. Ngoduy, D.: Application of gas-kinetic theory to modelling mixed traffic of manual and adaptive cruise control vehicles. Transportmetrica 8, 43–60 (2012)

    Article  Google Scholar 

  22. Ngoduy, D.: Multiclass first order modelling of traffic networks using discontinuous flow-density relationships. Transportmetrica 6, 121–141 (2010)

    Article  Google Scholar 

  23. Ngoduy, D.: Multiclass first-order traffic model using stochastic fundamental diagrams. Transportmetrica 7, 111–125 (2011)

    Article  Google Scholar 

  24. Ngoduy, D., Liu, R.: Multiclass first order simulation model to explain non-linear traffic phenomena. Physica A 385, 667–682 (2007)

    Article  Google Scholar 

  25. Ngoduy, D., Tampere, C.M.J.: Macroscopic effects of reaction time on traffic flow characteristics. Phys. Scr. 80, 025802 (2009)

    Article  Google Scholar 

  26. Ngoduy, D., Hoogendoorn, S.P., Liu, R.: Continuum traffic flow modelling of cooperative traffic systems. Physica A 388, 2705–2716 (2009)

    Article  Google Scholar 

  27. Olmos, L.E., Munoz, J.D.: A cellular automaton model for the traffic floow in Bogota. Int. J. Mod. Phys. C 15, 1397–1411 (2004)

    Article  MATH  Google Scholar 

  28. Paveri-Fontana, S.L.: On Boltzmann-like treatments for traffic flow: a critical review of the basic model and an alternative proposal for dilute traffic analysis. Transp. Res., Part B, Methodol. 9, 225–235 (1975)

    Google Scholar 

  29. Payne, H.J.: Models for freeway traffic control. In: Mathematical Models of Public Systems, vol. 1, pp. 51–61 (1971)

    Google Scholar 

  30. Philips, W.F.: Kinetic model for traffic flow with continuum implications. Transp. Res. Plan. Technol. 5, 131–138 (1979)

    Article  Google Scholar 

  31. Prigogine, I., Andrews, F.C.: A Boltzmann-like approach for traffic flow. Oper. Res. 8, 789–797 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  32. Richards, P.I.: Shock waves on the highway. Oper. Res. 4, 42–51 (1956)

    Article  MathSciNet  Google Scholar 

  33. Schonhof, M., Helbing, D.: Empirical features of congested traffic states and their implications for traffic modeling. Transp. Sci. 41, 135–166 (2007)

    Article  Google Scholar 

  34. Treiber, M., Helbing, D.: Macroscopic simulation of widely scattered synchronized traffic states. J. Phys. A, Math. Gen. 32, L17–L23 (1999)

    Article  Google Scholar 

  35. Treiber, M., Kesting, A.: Verkehrsdynamik und -simulation, pp. 226–230. Springer, Berlin (2010)

    Book  MATH  Google Scholar 

  36. Treiber, M., Hennecke, A., Helbing, D.: Derivation, properties and simulation of a gas-kinetic-based, non-local traffic model. Phys. Rev. E 59, 239–253 (1999)

    Article  Google Scholar 

  37. Treiber, M., Kesting, A., Helbing, D.: Three-phase traffic theory and two-phase models with a fundamental diagram in the light of empirical stylized facts. Transp. Res., Part B 44, 983–1000 (2010)

    Article  Google Scholar 

  38. Wong, G.C.K., Wong, S.C.: A multiclass traffic flow model–an extension of LWR model with heterogeneous drivers. Transp. Res., Part A 36, 763–848 (2002)

    Google Scholar 

  39. Zhang, P., Wong, S.: Essence of conservation forms in the travelling waves solutions of higher order traffic models. Phys. Rev. E 74, 026109 (2006)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Ngoduy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ngoduy, D. Effect of driver behaviours on the formation and dissipation of traffic flow instabilities. Nonlinear Dyn 69, 969–975 (2012). https://doi.org/10.1007/s11071-011-0318-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-011-0318-6

Keywords

Navigation