Skip to main content

Advertisement

Log in

Targeted energy transfer with parallel nonlinear energy sinks. Part I: Design theory and numerical results

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper, we study a Targeted Energy Transfer (TET) problem between a p degrees-of-freedom (dof) linear master structure and several coupled parallel slave Nonlinear Energy Sink (NES) systems. In detail, each lth dof l=1,2,…,p contains n l parallel NES; so the linear structure has (n 1+n 2+⋅⋅⋅+n l +⋅⋅⋅+n p ) NES. We are interested to study analytically the TET phenomenon during the first mode of the compound system. To this end, complexification, averaging, and multiple scales methods are used.

The system is studied under 1:1 resonance for the transient regime and under harmonic excitation. The influence of the system parameters is observed through dimensionless variables. An analytical criterion is defined to tune NES parameters which lead to an efficient TET for the transient and the forced regimes. It will be demonstrated that analytical results are in good agreement with numerical ones.

This paper will be followed by a companion paper which mainly deals with the governing equations for compound nonlinear systems with trees of NES devices at each dof; then experimental results of a four storey structure with two parallel NES at the top floor which are tuned by the mentioned technique in the current paper will be demonstrated and commented upon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

c n,j :

damping of NES j attached to the dof n

k n,j :

stiffness of NES j attached to the dof n

q 1 :

first mode generalized displacement of the linear system

x n,j :

displacement of NES j attached to the dof n

\(C_{1}^{*}\) :

first mode modal damping of the linear system

F n (t):

external forcing on dof n

\(K_{1}^{*}\) :

first mode modal stiffness of the linear system

\(M_{1}^{*}\) :

first mode modal mass of the linear system

φ n,1 :

first mode modal shape of the linear system at dof n

References

  1. Silva, C.D.: Vibration and Shock Handbook. CRC Press, Boca Raton (2005)

    Book  MATH  Google Scholar 

  2. Vakakis, A.F.: Inducing passive nonlinear energy sink in vibrating systems. J. Vib. Acoust. 123(3), 324–332 (2001)

    Article  Google Scholar 

  3. Gendelman, O., Manevitch, L., Vakakis, A., M’Closkey, R.: Energy pumping in nonlinear mechanical oscillators. Part 1. Dynamics of the underlying Hamiltonian systems. J. Appl. Mech. 68, 42–48 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  4. Vakakis, A., Gendelman, O.: Energy pumping in nonlinear mechanical oscillators. Part 2. Resonance capture. J. Appl. Mech. 68, 34–41 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  5. Vakakis, A.: Shock isolation through the use of nonlinear energy sinks. J. Vib. Control 12, 355–371 (2003)

    Google Scholar 

  6. Gendelman, O.: Bifurcations of nonlinear normal modes of linear oscillator with strongly nonlinear damped attachment. Nonlinear Dyn. 37(2), 115–128 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  7. Gendelman, O., Lamarque, C.-H.: Dynamics of linear oscillator coupled to strongly nonlinear attachment with multiple states of equilibrium. Chaos Solitons Fractals 24(2), 501–509 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  8. Gendelman, O., Gourdon, E., Lamarque, C.-H.: Quasiperiodic energy pumping in coupled oscillators under periodic forcing. J. Sound Vib. 294, 651–662 (2006)

    Article  Google Scholar 

  9. Musienko, A., Lamarque, C.-H., Manevitch, L.: Design of mechanical energy pumping devices. J. Vib. Control 12(4), 355–371 (2006)

    Article  MATH  Google Scholar 

  10. Manevitch, L., Gourdon, E., Lamarque, C.-H.: Parameters optimization for energy pumping in strongly nonhomogeneous 2 dof system. Chaos Solitons Fractals 31(4), 900–911 (2007)

    Article  Google Scholar 

  11. Manevitch, L., Musienko, A., Lamarque, C.-H.: New analytical approach to energy pumping problem in strongly nonhomogeneous 2 dof systems. Meccanica 42(1), 77–83 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  12. Vakakis, A.F., Gendelman, O., Bergman, L., McFarland, D., Kerschen, G., Lee, Y.: Nonlinear Targeted Energy Transfer in Mechanical and Structural Systems I. Springer, Berlin (2009)

    Google Scholar 

  13. Vakakis, A.F., Gendelman, O., Bergman, L., McFarland, D., Kerschen, G., Lee, Y.: Nonlinear Targeted Energy Transfer in Mechanical and Structural Systems II. Springer, Berlin (2009)

    Google Scholar 

  14. Vakakis, A.F., Manevitch, L.I., Mikhlin, Y.V., Pilipchuk, V.N., Zevin, A.A.: Normal Modes and Localization in Nonlinear Systems. Wiley, New York (1996)

    Book  MATH  Google Scholar 

  15. Manevitch, L., Gourdon, E., Lamarque, C.-H.: Towards the design of an optimal energetic sink in a strongly inhomogeneous two-degree-of-freedom system. ASME J. Appl. Mech. 74, 1078–1086 (2007)

    Article  Google Scholar 

  16. Schmidt, F., Lamarque, C.-H.: Energy pumping for mechanical systems involving non-smooth saint-venant terms. Int. J. Non-Linear Mech. 45(9), 866–875 (2010)

    Article  Google Scholar 

  17. Manevitch, L., Manevitch, E.: Limiting phase trajectories (LPT) and resonance in a strongly asymmetric 2 dof system. In: Proceedings of 10th Conference on Dynamical System-Theory and Applications, December 7–10, Lodz, Poland (2009)

    Google Scholar 

  18. Pham, T., Lamarque, C.-H., Pernot, S.: Passive control of one degree of freedom nonlinear quadratic oscillator under combination resonance. Commun. Nonlinear Sci. Numer. Simul. 16(5), 2275–2288 (2011). In: Biological and Mechanical Systems in Modern Control Theory, DSTA2009 Conference

    Article  MathSciNet  Google Scholar 

  19. Farland, D., Bergman, L., Vakakis, A.: Experimental study of non-linear energy pumping occurring at a single fast frequency. Int. J. Non-Linear Mech. 40(6), 891–899 (2005)

    Article  Google Scholar 

  20. Gourdon, E., Alexander, N., Taylor, C., Lamarque, C.-H., Pernot, S.: Nonlinear energy pumping under transient forcing with strongly nonlinear coupling: Theoretical and experimental results. J. Sound Vib. 300(3–5), 522–551 (2007)

    Article  Google Scholar 

  21. Gourdon, E., Lamarque, C.-H., Pernot, S.: Contribution to efficiency of irreversible passive energy pumping with a strong nonlinear attachment. Nonlinear Dyn. 50(4), 793–808 (2007)

    Article  MATH  Google Scholar 

  22. Manevitch, L.: Complex Representation of Dynamics of Coupled Oscillators, pp. 269–300. Kluwer Academic/Plenum Publishers, New York (1999)

    Google Scholar 

  23. Nayfeh, A.H., Mook, D.T.: Nonlinear Oscillations. Wiley, New York (1979)

    MATH  Google Scholar 

  24. Gendelman, O., Starosvetsky, Y., Feldman, M.: Attractors of harmonically forced linear oscillator with attached nonlinear energy sink 1: Description of response regimes. Nonlinear Dyn. 51(1–2), 31–46 (2008)

    MATH  Google Scholar 

  25. Nguyen, T.: Etude du comportement dynamique et optimisation d’absorbeurs non-lineaires: theorie et experience. Ph.D. thesis, No. order 2010-03, Universite de Lyon, Lyon, France (2010)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bastien Vaurigaud.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vaurigaud, B., Ture Savadkoohi, A. & Lamarque, CH. Targeted energy transfer with parallel nonlinear energy sinks. Part I: Design theory and numerical results. Nonlinear Dyn 66, 763–780 (2011). https://doi.org/10.1007/s11071-011-9949-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-011-9949-x

Keywords

Navigation