Skip to main content
Log in

Synchronization between fractional-order Ravinovich–Fabrikant and Lotka–Volterra systems

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This article examines the synchronization performance between two fractional-order systems, viz., the Ravinovich–Fabrikant chaotic system as drive system and the Lotka–Volterra system as response system. The chaotic attractors of the systems are found for fractional-order time derivatives described in Caputo sense. Numerical simulation results which are carried out using Adams–Boshforth–Moulton method show that the method is reliable and effective for synchronization of nonlinear dynamical evolutionary systems. Effects on synchronization time due to the presence of fractional-order derivative are the key features of the present article.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Kulish, V.V., Lage, J.L.: Application of fractional calculus to fluid mechanics. J. Fluids Eng. 124, 803–806 (2002)

    Article  Google Scholar 

  2. Das, S., Tripathi, D., Pandey, S.K.: Peristaltic flow of viscoelastic fluid with fractional maxwell model through a channel. Appl. Math. Comput. 215, 3645–3654 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  3. Soczkiewicz, E.: Application of fractional calculus in the theory of viscoelasticity. Mol. Quantum Acoustics 23, 397–404 (2002)

    Google Scholar 

  4. Carpinteri, A., Cornetti, P., Kolwankar, K.M.: Calculation of the tensile and flexural strength of disordered materials using fractional calculus. Chaos Solitons Fractals 21, 623–632 (2004)

    Article  MATH  Google Scholar 

  5. Yildirim, A.: An algorithm for solving the fractional nonlinear Schrödinger equation by means of the homotopy perturbation method. Int. J. Nonlinear Sci. Numer. Simul. 10, 445–451 (2011)

    Article  Google Scholar 

  6. Magin, R.L.: Fractional calculus in bioengineering. Part 3. Crit. Rev. Biomed. Eng. 32, 195–377 (2004)

    Article  Google Scholar 

  7. Glockle, W.G., Mattfeld, T., Nonnenmacher, T.F., Weibel, E.R.: Fractals in Biology and Medicine, vol. 2. Birkhauser, Basel (1998)

    Google Scholar 

  8. Magin, R.L.: Fractional calculus models of complex dynamics in biological tissues. Comput. Math. Appl. 59, 1585–1593 (2010)

    Article  MathSciNet  Google Scholar 

  9. Gökdogan, A., Merdan, M., Yildirim, A.: A multistage differential transformation method for approximate solution of Hantavirus infection model. Commun. Nonlinear Sci. Numer. Simul. 17, 1–8 (2012)

    Article  MathSciNet  Google Scholar 

  10. Magin, R.L.: Modeling the cardiac tissue electrode interface using fractional calculus. J. Vib. Control 14, 1431–1442 (2008)

    Article  MATH  Google Scholar 

  11. Sabatier, J., Agrawal, Om.P., Machado, J.A.T.: Advance in Fractional Calculus. Theoretical Developments and Applications. Springer, Berlin (2007)

    Book  Google Scholar 

  12. Pecora, L.M., Carroll, T.L.: Synchronization in chaotic systems. Phys. Rev. Lett. 64, 821–824 (1990)

    Article  MathSciNet  Google Scholar 

  13. Blasius, B., Huppert, A., Stone, L.: Complex dynamics and phase synchronization in spatially extended ecological system. Nature 399, 354–359 (1999)

    Article  Google Scholar 

  14. Murali, M.K.: Chaos in Nonlinear Oscillators: Controlling and Synchronization. World Scientific, Singapore (1996)

    MATH  Google Scholar 

  15. Han, S.K., Kerrer, C., Kuramoto, Y.: D-phasing and bursting in coupled neural oscillators. Phys. Rev. Lett. 75, 3190–3193 (1995)

    Article  Google Scholar 

  16. Cuomo, K.M., Oppenheim, A.V.: Circuit implementation of synchronized chaos with application to communication. Phys. Rev. Lett. 71, 65–68 (1993)

    Article  Google Scholar 

  17. Huang, L., Feng, R., Wang, M.: Synchronization of chaotic systems via nonlinear control. Phys. Lett. A 320, 271–275 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  18. Park, J.H., Kwon, O.M.: A novel criterion for delayed feedback control of time-delay chaotic systems. Chaos Solitons Fractals 23, 495–501 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  19. Chen, S.H., Lu, J.: Synchronization of an uncertain unified chaotic system via adaptive control. Chaos Solitons Fractals 14, 643–647 (2002)

    Article  MATH  Google Scholar 

  20. Odibat, Z.M.: Adaptive feedback control and synchronization of non-identical chaotic fractional order systems. Nonlinear Dyn. 60, 479–487 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  21. Njah, A.N.: Tracking control and synchronization of the new hyperchaotic Liu system via backstepping techniques. Nonlinear Dyn. 61, 1–9 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  22. Yassen, M.T.: Chaos synchronization between two different chaotic systems using active control. Chaos Solitons Fractals 23, 131–140 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  23. Wu, X., Lü, J.: Parameter identification and backstepping control of uncertain Lü system. Chaos Solitons Fractals 18, 721–729 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  24. Yau, H.T.: Design of adaptive sliding mode controller for chaos synchronization with uncertainties. Chaos Solitons Fractals 22, 341–347 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  25. Li, R., Wei, H., Li, S.: Chaos control and synchronization of the ∅6-Van der Pol system driven by external and parametric excitations. Nonlinear Dyn. 53, 261–271 (2008)

    Article  MATH  Google Scholar 

  26. Mahmoud, G.M., Bountis, T., AbdEl-Latif, G.M., Mahmoud, E.E.: Chaos synchronization of two different chaotic complex Chen and Lü systems. Nonlinear Dyn. 55, 43–53 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  27. Yang, S.S., Juan, C.K.: Generalized synchronization in chaotic systems. Chaos Solitons Fractals 9, 1703–1707 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  28. Yu, H.J., Liu, Y.Z.: Chaotic synchronization based on stability criterion of linear systems. Phys. Lett. A 314, 292–298 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  29. Rosenblum, M.G., Pikovsky, A.S., Kurths, J.: From phase to lag synchronization in coupled chaotic oscillators. Phys. Rev. Lett. 78, 4193–4196 (1997)

    Article  Google Scholar 

  30. Zhu, Q., Cao, J.: Adaptive synchronization of chaotic Cohen–Crossberg neural networks with mixed time delays. Nonlinear Dyn. 61, 517–534 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  31. Erjaee, G.H., Taghvafard, H.: Phase and anti-phase synchronization of fractional order chaotic systems via active control. Commun. Nonlinear Sci. Numer. Simul. 16, 4079–4088 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  32. Mahmoud, G.M., Mahmoud, E.E.: Phase and antiphase synchronization of two identical hyperchaotic complex nonlinear systems. Nonlinear Dyn. 61, 141–152 (2010)

    Article  MATH  Google Scholar 

  33. Liu, W.Q.: Anti-phase synchronization in coupled chaotic oscillators. Phys. Rev. E 73, 57203 (2006)

    Article  Google Scholar 

  34. Liu, J.B., Ye, C.F., Zhang, S.J., Song, W.T.: Anti-phase synchronization in coupled map lattices. Phys. Lett. A 274, 27–29 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  35. Ghosh, D., Bhattacharya, S.: Projective synchronization of new hyperchaotic system with fully unknown parameters. Nonlinear Dyn. 61, 11–21 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  36. Lotka, A.: Elements of Physical Biology. Williams and Wilkins, Baltimore (1925)

    MATH  Google Scholar 

  37. Volterra, V.: Variazioni e fluttuazioni del numero di individui in specie animali conviventi. Mem. Accd. Lincei 2, 31–113 (1926)

    Google Scholar 

  38. Nikola, S., Larry, D.G.: Explosive route to chaos through a fractal torus in a generalized Lotka–Volterra model. Bull. Math. Biol. 50, 465–491 (1988)

    MathSciNet  MATH  Google Scholar 

  39. Danca, M.F., Chen, G.: Bifurcation and chaos in a complex model of dissipative medium. Int. J. Bifurc. Chaos 14, 3409–3447 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  40. Diethelm, K., Ford, J., Freed, A.: Detailed error analysis for a fractional Adams method. Numer. Algorithms 36, 31–52 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  41. Diethelm, K., Ford, J.: Multi-order fractional differential equations and their numerical solution. Appl. Math. Comput. 154, 621–640 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  42. Matignon, D.: Stability results for fractional differential equations with applications to control processing. In: Computational Engineering in Systems and Application Multi Conference, IMACS, IEEE-SMC Proceedings, Lille, France, vol. 2, pp. 963–968 (1996)

    Google Scholar 

  43. Sprott, J.C.: Chaos and Time-Series Analysis, pp. 230–440. Oxford University Press, Oxford (2003)

    MATH  Google Scholar 

  44. Costello, J.S.: Synchronization of chaos in a generalized Lotka–Volterra attractor. Nonlinear J. 1, 11–17 (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Das.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Agrawal, S.K., Srivastava, M. & Das, S. Synchronization between fractional-order Ravinovich–Fabrikant and Lotka–Volterra systems. Nonlinear Dyn 69, 2277–2288 (2012). https://doi.org/10.1007/s11071-012-0426-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-012-0426-y

Keywords

Navigation