Skip to main content
Log in

Nonlinear dynamic response of nanotube-reinforced composite plates resting on elastic foundations in thermal environments

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper presents an investigation on the nonlinear dynamic response of carbon nanotube-reinforced composite (CNTRC) plates resting on elastic foundations in thermal environments. Two configurations, i.e., single-layer CNTRC plate and three-layer plate that is composed of a homogeneous core layer and two CNTRC surface sheets, are considered. The single-walled carbon nanotube (SWCNT) reinforcement is either uniformly distributed (UD) or functionally graded (FG) in the thickness direction. The material properties of FG-CNTRC plates are assumed to be graded in the thickness direction, and are estimated through a micromechanical model. The motion equations are based on a higher-order shear deformation theory with a von Kármán-type of kinematic nonlinearity. The thermal effects are also included and the material properties of CNTRCs are assumed to be temperature-dependent. The equations of motion that includes plate-foundation interaction are solved by a two-step perturbation technique. Two cases of the in-plane boundary conditions are considered. Initial stresses caused by thermal loads or in-plane edge loads are introduced. The effects of material property gradient, the volume fraction distribution, the foundation stiffness, the temperature change, the initial stress, and the core-to-face sheet thickness ratio on the dynamic response of CNTRC plates are discussed in detail through a parametric study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Ajayan, P.M., Stephan, O., Colliex, C., Trauth, D.: Aligned carbon nanotube arrays formed by cutting a polymer resin—nanotube composite. Science 265, 1212–1214 (1994)

    Article  Google Scholar 

  2. Thostenson, E.T., Chou, T.W.: Aligned multi-walled carbon nanotube-reinforced composites: processing and mechanical characterization. J. Phys. D, Appl. Phys. 35, L77 (2002)

    Article  Google Scholar 

  3. Sun, C.H., Li, F., Cheng, H.M., Lu, G.Q.: Axial Young’s modulus prediction of single-walled carbon nanotube arrays with diameters from nanometer to meter scales. Appl. Phys. Lett. 87, 193101 (2005)

    Article  Google Scholar 

  4. Griebel, M., Hamaekers, J.: Molecular dynamics simulations of the elastic moduli of polymer–carbon nanotube composites. Comput. Methods Appl. Mech. Eng. 193, 1773–1788 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  5. Song, Y.S., Youn, J.R.: Modeling of effective elastic properties for polymer based carbon nanotube composites. Polymer 47, 1741–1748 (2006)

    Article  Google Scholar 

  6. Han, Y., Elliott, J.: Molecular dynamics simulations of the elastic properties of polymer/carbon nanotube composites. Comput. Mater. Sci. 39, 315–323 (2007)

    Article  Google Scholar 

  7. Bonnet, P., Sireude, D., Garnier, B., Chauvet, O.: Thermal properties and percolation in carbon nanotube–polymer composites. J. Appl. Phys. 91, 201910 (2007)

    Google Scholar 

  8. Meguid, S.A., Sun, Y.: On the tensile and shear strength of nano-reinforced composite interfaces. Mater. Des. 25, 289–296 (2004)

    Article  Google Scholar 

  9. Shen, H.-S.: Nonlinear bending of functionally graded carbon nanotube-reinforced composite plates in thermal environments. Compos. Struct. 91, 9–19 (2009)

    Article  Google Scholar 

  10. Shen, H.-S., Zhang, C.-L.: Thermal buckling and postbuckling behavior of functionally graded carbon nanotube-reinforced composite plates. Mater. Des. 31, 3403–3411 (2010)

    Article  Google Scholar 

  11. Shen, H.-S., Zhu, Z.H.: Buckling and postbuckling behavior of functionally graded nanotube-reinforced composite plates in thermal environments. Comput. Mater. Continua 18, 155–182 (2010)

    Google Scholar 

  12. Wang, Z.-X., Shen, H.-S.: Nonlinear vibration of nanotube-reinforced composite plates in thermal environments. Comput. Mater. Sci. 50, 2319–2330 (2011)

    Article  Google Scholar 

  13. Shen, H.-S.: Postbuckling of nanotube-reinforced composite cylindrical shells in thermal environments, part I: axially-loaded shells. Compos. Struct. 93, 2096–2108 (2011)

    Article  Google Scholar 

  14. Shen, H.-S.: Postbuckling of nanotube-reinforced composite cylindrical shells in thermal environments, part II: pressure-loaded shells. Compos. Struct. 93, 2496–2503 (2011)

    Article  Google Scholar 

  15. Shen, H.-S.: Thermal buckling and postbuckling behavior of functionally graded carbon nanotube-reinforced composite cylindrical shells. Composites, Part B, Eng. 43, 1030–1038 (2012)

    Article  Google Scholar 

  16. Shen, H.-S., Xiang, Y.: Nonlinear vibration of nanotube-reinforced composite cylindrical shells in thermal environments. Comput. Methods Appl. Mech. Eng. 213–216, 196–205 (2012)

    Article  MathSciNet  Google Scholar 

  17. Zhu, P., Lei, Z.X., Liew, K.M.: Static and free vibration analyses of carbon nanotube-reinforced composite plates using finite element method with first order shear deformation plate theory. Compos. Struct. 94, 1450–1460 (2012)

    Article  Google Scholar 

  18. Mehrabadi, S.J., Aragh, B.S., Khoshkhahesh, V., Taherpour, A.: Mechanical buckling of nanocomposite rectangular plate reinforced by aligned and straight single-walled carbon nanotubes. Composites, Part B, Eng. 43, 2031–2040 (2012)

    Article  Google Scholar 

  19. Aragh, B.S., Hedayati, H.: Eshelby–Mori–Tanaka approach for vibrational behavior of continuously graded carbon nanotube-reinforced cylindrical panels. Composites, Part B, Eng. 43, 1943–1954 (2012)

    Article  Google Scholar 

  20. Ke, L.-L., Yang, J., Kitipornchai, S.: Nonlinear free vibration of functionally graded carbon nanotube-reinforced composite beams. Compos. Struct. 92, 676–683 (2010)

    Article  Google Scholar 

  21. Yas, M.H., Heshmati, M.: Dynamic analysis of functionally graded nanocomposite beams reinforced by randomly oriented carbon nanotube under the action of moving load. Appl. Math. Model. 36, 1371–1394 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  22. Kwon, H., Bradbury, C.R., Leparoux, M.: Fabrication of functionally graded carbon nanotube-reinforced aluminum matrix composite. Adv. Eng. Mater. 13, 325–329 (2011)

    Article  Google Scholar 

  23. Wang, Z.-X., Shen, H.-S.: Nonlinear vibration and bending of sandwich plates with nanotube-reinforced composite face sheets. Composites, Part B, Eng. 43, 411–421 (2012)

    Article  Google Scholar 

  24. Shen, H.-S., Zhu, Z.H.: Postbuckling of sandwich plates with nanotube-reinforced composite face sheets resting on elastic foundations. Eur. J. Mech. A, Solids 35, 10–21 (2012)

    Article  MathSciNet  Google Scholar 

  25. Reddy, J.N.: A refined nonlinear theory of plates with transverse shear deformation. Int. J. Solids Struct. 20, 881–896 (1984)

    Article  MATH  Google Scholar 

  26. Shen, H.-S.: Kármán-type equations for a higher-order shear deformation plate theory and its use in the thermal postbuckling analysis. Appl. Math. Mech. 18, 1137–1152 (1997)

    Article  MATH  Google Scholar 

  27. Seidel, G.D., Lagoudas, D.C.: Micromechanical analysis of the effective elastic properties of carbon nanotube reinforced composites. Mech. Mater. 38, 884–907 (2006)

    Article  Google Scholar 

  28. Li, X., Gao, H., Scrivens, W.A., Fei, D., Xu, X., Sutton, M.A., Reynolds, A.P., Myrick, M.L.: Reinforcing mechanisms of single-walled carbon nanotube-reinforced polymer composites. J. Nanosci. Nanotechnol. 7, 2309–2317 (2007)

    Article  Google Scholar 

  29. Esawi, A.M.K., Farag, M.M.: Carbon nanotube reinforced composites: potential and current challenges. Mater. Des. 28, 2394–2401 (2007)

    Article  Google Scholar 

  30. Anumandla, V., Gibson, R.F.: A comprehensive closed form micromechanics model for estimating the elastic modulus of nanotube-reinforced composites. Composites, Part A, Appl. Sci. Manuf. 37, 2178–2185 (2006)

    Article  Google Scholar 

  31. Librescu, L., Oh, S.-Y., Song, O.: Thin-walled beams made of functionally graded materials and operating in a high temperature environment: vibration and stability. J. Therm. Stresses 28, 649–712 (2005)

    Article  Google Scholar 

  32. Shen, H.-S., Wang, Z.-X.: Assessment of Voigt and Mori–Tanaka models for vibration analysis of functionally graded plates. Compos. Struct. 94, 2197–2208 (2012)

    Article  Google Scholar 

  33. Shen, H.-S.: Nonlinear vibration of shear deformable FGM cylindrical shells surrounded by an elastic medium. Compos. Struct. 94, 1144–1154 (2012)

    Article  Google Scholar 

  34. Qian, D., Dickey, E.C., Andrews, R., Rantell, T.: Load transfer and deformation mechanisms in carbon nanotube–polystyrene composites. Appl. Phys. Lett. 76, 2868–2870 (2000)

    Article  Google Scholar 

  35. Yang, J., Shen, H.-S.: Dynamic response of initially stressed functionally graded rectangular thin plates. Compos. Struct. 54, 497–508 (2001)

    Article  Google Scholar 

  36. Yang, J., Shen, H.-S., Zhang, L.: Nonlinear local response of foam-filled sandwich plates with laminated faces under combined transverse and in-plane loads. Compos. Struct. 52, 137–148 (2001)

    Article  Google Scholar 

  37. Schwaar, M., Gmür, T., Frieden, J.: Modal numerical–experimental identification method for characterising the elastic and damping properties in sandwich structures with a relatively stiff core. Compos. Struct. 94, 2227–2236 (2012)

    Article  Google Scholar 

  38. Shen, H.-S., Yang, J., Zhang, L.: Free and forced vibration of Reissner–Mindlin plates with free edges resting on elastic foundations. J. Sound Vib. 244, 299–320 (2001)

    Article  Google Scholar 

  39. Yang, J., Zhang, L.: Nonlinear analysis of imperfect laminated thin plates under transverse and in-plane loads and resting on an elastic foundation by a semianalytical approach. Thin-Walled Struct. 38, 195–227 (2000)

    Article  Google Scholar 

  40. Shen, H.-S.: Nonlinear thermal bending response of FGM plates due to heat conduction. Composites, Part B, Eng. 38, 201–215 (2007)

    Article  Google Scholar 

  41. Wang, C.Y., Zhang, L.C.: A critical assessment of the elastic properties and effective wall thickness of single-walled carbon nanotubes. Nanotechnology 19, 075705 (2008)

    Article  Google Scholar 

  42. Fukuda, H., Kawata, K.: On Young’s modulus of short fibre composites. Fibre Sci. Technol. 7, 207–222 (1974)

    Article  Google Scholar 

  43. Wen, P.H.: The fundamental solution of Mindlin plates resting on an elastic foundation in the Laplace domain and its applications. Int. J. Solids Struct. 45, 1032–1050 (2008)

    Article  MATH  Google Scholar 

  44. Ramachandra, L.S., Meyer-Piening, H.R.: Transient response of sandwich plates in contact with water. Comput. Struct. 60, 677–681 (1996)

    Article  Google Scholar 

  45. Nayka, A.K., Shenoi, R.A., Moy, S.S.J.: Dynamic response of composite sandwich plates subjected to initial stresses. Composites, Part A, Appl. Sci. Manuf. 37, 1189–1205 (2006)

    Article  Google Scholar 

  46. Touloukian, Y.S.: Thermophysical Properties of High Temperature Solid Materials. McMillan, New York (1967)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui-Shen Shen.

Appendix

Appendix

In Eqs. (28)–(31)

(36)

In Eqs. (33) and (34)

(37)

for initially thermal stressed plates (immovable edge condition)

(38)

and for initially compressed stressed plates (movable edge condition)

(39)

in which P cr is the critical buckling load for the UD plate (or sandwich plate) under uniaxial compression in the X direction, and η is the load proportion ratio, defined by σ y =ησ x . In the above equations (with others are defined as in [12]).

(40)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, ZX., Shen, HS. Nonlinear dynamic response of nanotube-reinforced composite plates resting on elastic foundations in thermal environments. Nonlinear Dyn 70, 735–754 (2012). https://doi.org/10.1007/s11071-012-0491-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-012-0491-2

Keywords

Navigation