Skip to main content
Log in

Stochastic solution to a time-fractional attenuated wave equation

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The power law wave equation uses two different fractional derivative terms to model wave propagation with power law attenuation. This equation averages complex nonlinear dynamics into a convenient, tractable form with an explicit analytical solution. This paper develops a random walk model to explain the appearance and meaning of the fractional derivative terms in that equation, and discusses an application to medical ultrasound. In the process, a new strictly causal solution to this fractional wave equation is developed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Duck, F.A.: Physical Properties of Tissue: A Comprehensive Reference Book. Academic Press, San Diego (1990)

    Google Scholar 

  2. Zaslavsky, G.: Fractional kinetic equation for Hamiltonian chaos. Physica D 76, 110–122 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  3. Muslih, S.I., Baleanu, D.: Fractional Euler–Lagrange equations of motion in fractional space. J. Vib. Control 13(9–10), 1209–1216 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  4. Caputo, M., Carcione, J.M.: Wave simulation in dissipative media described by distributed-order fractional time derivatives. J. Vib. Control 17(8), 1121–1130 (2011)

    Article  Google Scholar 

  5. Herzallah, M., Baleanu, D.: Fractional Euler–Lagrange equations revisited. Nonlinear Dyn. 69(3), 977–982 (2012)

    Article  MathSciNet  Google Scholar 

  6. Diethelm, K.: A fractional calculus based model for the simulation of an outbreak of dengue fever. Nonlinear Dyn. (2012, to appear). doi:10.1007/s11071-012-0475-2

  7. Szabo, T.L.: Time domain wave equations for lossy media obeying a frequency power law. J. Acoust. Soc. Am. 96, 491–500 (1994)

    Article  Google Scholar 

  8. Kelly, J.F., McGough, R.J., Meerschaert, M.M.: Analytical time-domain Green’s functions for power-law media. J. Acoust. Soc. Am. 124(5), 2861–2872 (2008)

    Article  Google Scholar 

  9. Agarwal, R.P., Benchohra, M., Slimani, B.A.: Existence results for differential equations with fractional order and impulses. Mem. Differ. Equ. Math. Phys. 44, 1–21 (2008)

    MathSciNet  MATH  Google Scholar 

  10. Meerschaert, M.M., Benson, D.A., Scheffler, H.-P., Baeumer, B.: Stochastic solution of space-time fractional diffusion equations. Phys. Rev. E 65, 1103–1106 (2002)

    Article  MathSciNet  Google Scholar 

  11. Chen, W., Holm, S.: Modified Szabo’s wave equation models for lossy media obeying frequency power law. J. Acoust. Soc. Am. 114, 2570–2754 (2003)

    Article  Google Scholar 

  12. Liebler, M., Ginter, S., Dreyer, T., Riedlinger, R.E.: Full wave modeling of therapeutic ultrasound: efficient time-domain implementation of the frequency power-law attenuation. J. Acoust. Soc. Am. 116, 2742–2750 (2004)

    Article  Google Scholar 

  13. Blackstock, D.T.: Transient solution for sound radiated into a viscous fluid. J. Acoust. Soc. Am. 41, 1312–1319 (1967)

    Article  MATH  Google Scholar 

  14. Meerschaert, M.M., Sikorskii, A.: Stochastic Models for Fractional Calculus. De Gruyter, Berlin (2012)

    MATH  Google Scholar 

  15. Meerschaert, M.M., Scheffler, H.-P.: Limit theorems for continuous time random walks with infinite mean waiting times. J. Appl. Probab. 41(3), 623–638 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  16. Clarke, D.D., Meerschaert, M.M., Wheatcraft, S.W.: Fractal travel time estimates for dispersive contaminants. Ground Water 43(3), 401–407 (2005)

    Article  Google Scholar 

  17. Jacob, N.: Pseudo Differential Operators & Markov Processes: Markov Processes And Applications. Imperial College Press, London (2005)

    Book  MATH  Google Scholar 

  18. Kolokoltsov, V.N.: Generalized continuous-time random walks, subordination by hitting times, and fractional dynamics. Theory Probab. Appl. 53(4), 594–609 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  19. Baeumer, B., Benson, D.A., Meerschaert, M.M.: Advection and dispersion in time and space. Phys. A 350(2–4), 245–262 (2005)

    Google Scholar 

  20. Saichev, A.I., Zaslavsky, G.M.: Fractional kinetic equations: solutions and applications. Chaos 7(4), 753–764 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  21. Meerschaert, M.M., Straka, P.: Inverse stable subordinators. Preprint, available at www.stt.msu.edu/users/mcubed/hittingTime.pdf

  22. Meerschaert, M.M., Scheffler, H.-P.: Triangular array limits for continuous time random walks. Stoch. Process. Appl. 118(9), 1606–1633 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  23. Zolotarev, V.M.: One-dimensional Stable Distributions. Translations of Mathematical Monographs, vol. 65. AMS, Providence (1986)

    MATH  Google Scholar 

  24. Baeumer, B., Meerschaert, M.M.: Fractional diffusion with two time scales. Physica A 373, 237–251 (2007)

    Article  Google Scholar 

  25. Kumar, A., Meerschaert, M.M., Vellaisamy, P.: Fractional normal inverse Gaussian diffusion. Stat. Probab. Lett. 81(1), 146–152 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  26. Meerschaert, M.M., Scheffler, H.-P., Kern, P.: Limit theorem for continuous-time random walks with two time scales. J. Appl. Probab. 41(2), 455–466 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  27. Caputo, M.: Linear models of dissipation whose Q is almost frequency independent-II. Geophys. J. R. Astron. Soc. 13(5), 529–539 (1967)

    Article  Google Scholar 

  28. Wismer, M.G.: Finite element analysis of broadband acoustic pulses through inhomogenous media with power law attenuation. J. Acoust. Soc. Am. 120, 3493–3502 (2006)

    Article  Google Scholar 

  29. Chen, W., Holm, S.: Fractional Laplacian time-space models for linear and nonlinear lossy media exhibiting arbitrary frequency power-law dependency. J. Acoust. Soc. Am. 115, 1424–1430 (2004)

    Article  Google Scholar 

  30. Treeby, B.E., Cox, B.T.: Modeling power law absorption and dispersion for acoustic propagation using the fractional Laplacian. J. Acoust. Soc. Am. 127, 2741–2748 (2010)

    Article  Google Scholar 

Download references

Acknowledgements

This research was partially supported by NIH grant R01-EB012079 and NSF grants DMS-1025486 and DMS-0803360.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark M. Meerschaert.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meerschaert, M.M., Straka, P., Zhou, Y. et al. Stochastic solution to a time-fractional attenuated wave equation. Nonlinear Dyn 70, 1273–1281 (2012). https://doi.org/10.1007/s11071-012-0532-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-012-0532-x

Keywords

Navigation