Skip to main content

Advertisement

Log in

Power harvesting from transverse galloping of square cylinder

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The concept of exploiting galloping of square cylinders to harvest energy is investigated. The energy is harvested by attaching a piezoelectric transducer to the transverse degree of freedom. A representative model that accounts for the coupled cylinder displacement and harvested voltage is used to determine the levels of the harvested power. The focus is on the effect of the Reynolds number on the aerodynamic force, the onset of galloping, and the level of the harvested power. The quasi steady approximation is used to model the aerodynamic loads. A linear analysis is performed to determine the effects of the electrical load resistance and the Reynolds number on the onset of galloping, which is due to a Hopf bifurcation. We derive the normal form of the dynamic system near the onset of galloping to characterize the type of the instability and to determine the effects of the system parameters on its outputs near the bifurcation. The results show that the electrical load resistance and the Reynolds number play an important role in determining the level of the harvested power and the onset of galloping. The results also show that the maximum levels of harvested power are accompanied with minimum transverse displacements for both low- and high-Reynolds number configurations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Muralt, P.: Ferroelectric thin films for micro-sensors and actuators: a review. J. Micromech. Microeng. 10, 136–146 (2000)

    Article  Google Scholar 

  2. Gurav, S.P., Kasyap, A., Sheplak, M., Cattafesta, L., Haftka, R.T., Goosen, J.F.L., Van Keulen, F.: Uncertainty-based design optimization of a micro piezoelectric composite energy reclamation device. In: 10th AIAA/ISSSMO Multidisciplinary Analysis and Optimization Conference, Albany, NY, pp. 3559–3570 (2004)

    Google Scholar 

  3. Inman, D.J., Grisso, B.L.: Towards autonomous sensing. In: Proc. Smart Structures and Materials Conference, San Diego, CA, p. 61740T. SPIE, Bellingham (2006)

    Google Scholar 

  4. Roundy, S., Wright, P.K.: A piezoelectric vibration-based generator for wireless electronics. J. Smart Mater. Struct. 16, 809–823 (2005)

    Google Scholar 

  5. Capel, I.D., Dorrell, H.M., Spencer, E.P., Davis, M.W.: The amelioration of the suffering associated with spinal cord injury with subperception transcranial electrical stimulation. Spinal Cord 41, 109–117 (2003)

    Article  Google Scholar 

  6. Sodano, H.A., Inman, D.J., Park, G.: A review of power harvesting from vibration using piezoelectric materials. Shock Vib. Dig. 36, 197–205 (2004)

    Article  Google Scholar 

  7. Anton, S.R., Sodano, H.A.: A review of power harvesting using piezoelectric materials (2003–2006). J. Smart Mater. Struct. 16, 1–21 (2006)

    Article  Google Scholar 

  8. Erturk, A., Inman, D.J.: On mechanical modeling of cantilevered piezoelectric vibration energy harvesters. J. Intell. Mater. Struct. 19, 1311–1325 (2008)

    Article  Google Scholar 

  9. Erturk, A., Inman, D.J.: A distributed parameter electromechanical model for cantilevered piezoelectric energy harvesters. ASME J. Vib. Acoust. 130, 041002 (2008)

    Article  Google Scholar 

  10. Abdelkefi, A., Najar, F., Nayfeh, A.H., Ben Ayed, S.: An energy harvester using piezoelectric cantilever beams undergoing coupled bending-torsion vibrations. J. Smart Mater. Struct. 20, 115007 (2011)

    Article  Google Scholar 

  11. Abdelkefi, A., Nayfeh, A.H., Hajj, M.R.: Global nonlinear distributed-parameter model of parametrically excited piezoelectric energy harvesters. Nonlinear Dyn. 67, 1147–1160 (2011)

    Article  Google Scholar 

  12. Abdelkefi, A., Nayfeh, A.H., Hajj, M.R.: Effects of nonlinear piezoelectric coupling on energy harvesters under direct excitation. Nonlinear Dyn. 67, 1221–1232 (2011)

    Article  Google Scholar 

  13. Bryant, M., Garcia, E.: Energy harvesting: a key to wireless sensor nodes. Proc. SPIE 7493, 74931W (2009)

    Article  Google Scholar 

  14. Erturk, A., Vieira, W.G.R., De Marqui, C., Inman, D.J.: On the energy harvesting potential of piezoaeroelastic systems. Appl. Phys. Lett. 96, 184103 (2010)

    Article  Google Scholar 

  15. De Marqui, C., Erturk, A., Inman, D.J.: Piezoaeroelastic modeling and analysis of a generator wing with continuous and segmented electrodes. J. Intell. Mater. Syst. Struct. 21, 983–993 (2010)

    Article  Google Scholar 

  16. Sousa, V.C., de Anicezio, M., De Marqui, C., Erturk, A.: Enhanced aeroelastic energy harvesting by exploiting combined nonlinearities: theory and experiment. J. Smart Mater. Struct. 20, 094007 (2011)

    Article  Google Scholar 

  17. Abdelkefi, A., Nayfeh, A.H., Hajj, M.R.: Modeling and analysis of piezoaeroelastic energy harvesters. Nonlinear Dyn. 67, 925–939 (2011)

    Article  Google Scholar 

  18. Abdelkefi, A., Nayfeh, A.H., Hajj, M.R.: Design of piezoaeroelastic energy harvesters. Nonlinear Dyn. 68, 519–530 (2012)

    Article  Google Scholar 

  19. Abdelkefi, A., Nayfeh, A.H., Hajj, M.R.: Enhancement of power harvesting from piezoaeroelastic systems. Nonlinear Dyn. 68, 531–541 (2012)

    Article  Google Scholar 

  20. Abdelkefi, A., Hajj, M.R., Nayfeh, A.H.: Sensitivity analysis of piezoaeroelastic energy harvesters. J. Intell. Mater. Syst. Struct. 23, 1523–1532 (2012)

    Article  Google Scholar 

  21. Den Hartog, J.P.: Mechanical Vibrations. McGraw-Hill, New York (1956)

    MATH  Google Scholar 

  22. Parkinson, G.V., Smith, J.D.: The square prism as an aeroelastic nonlinear oscillator. Q. J. Mech. Appl. Math. 17, 225–239 (1964)

    Article  MATH  Google Scholar 

  23. Parkinson, G.V.: Mathematical models of flow-induced-vibrations of bluff bodies. In: Flow-Induced Structural Vibrations, pp. 81–127. Springer, Berlin (1974) (A75-15253 04-39)

    Chapter  Google Scholar 

  24. Parkinson, G.V.: Phenomena and modelling of flow-induced vibrations of bluff bodies. Prog. Aerosp. Sci. 26, 169–224 (1989)

    Article  Google Scholar 

  25. Belvins, R.D.: Flow-Induced Vibration. Krieger, Florida (1990)

    Google Scholar 

  26. Naudascher, E., Rockwell, D.: Flow-Induced Vibrations, An Engineering Guide. Dover, New York (1994)

    Google Scholar 

  27. Karakevich, M.I., Vasilenko, A.G.: Closed analytical solution for galloping aeroelastic self-oscillations. J. Wind Eng. Ind. Aerodyn. 65, 353–360 (1996)

    Article  Google Scholar 

  28. Laneville, A., Gartshore, I.S., Parkinson, G.V.: An explanation of some effects of turbulence on bluff bodies. In: Proc. of the Fourth International Conference on Wind Effects on Buildings and Structures, pp. 333–341. Cambridge University Press, Cambridge (1977)

    Google Scholar 

  29. Alonso, G., Meseguer, J., Prez-Grande, I.: Galloping instabilities of two-dimensional triangular cross-section bodies. Exp. Fluids 38, 789–795 (2005)

    Article  Google Scholar 

  30. Alonso, G., Meseguer, J., Prez-Grande, I.: Galloping stabilities of two-dimensional triangular cross-sectional bodies: a systematic approach. J. Wind Eng. Ind. Aerodyn. 95, 928–940 (2007)

    Article  Google Scholar 

  31. Novak, M., Tanaka, H.: Effect of turbulence on galloping instability. ASCE J. Eng. Mech. Div. 100, 27–47 (1974)

    Google Scholar 

  32. Novak, M.: Aeroelastic galloping of prismatic bodies. ASCE J. Eng. Mech. Div. 96, 115–142 (1969)

    Google Scholar 

  33. Barrero-Gil, A., Sanz-Andres, A., Roura, M.: Transverse galloping at low Reynolds number. J. Fluids Struct. 25, 1236–1242 (2009)

    Article  Google Scholar 

  34. Barrero-Gil, A., Alonso, G., Sanz-Andres, A.: Energy harvesting from transverse galloping. J. Sound Vib. 329, 2873–2883 (2010)

    Article  Google Scholar 

  35. Sohankar, A., Norberg, C., Davidson, L.: Low-Reynolds number flow around a square cylinder at incidence: study of blockage, onset of vortex shedding and outlet boundary conditions. Int. J. Numer. Methods Fluids 26, 39–56 (1998)

    Article  MATH  Google Scholar 

  36. Barrero-Gil, A., Sanz-Andres, A., Alonso, G.: Hysteresis in transverse galloping: the role of inflection points. J. Fluids Struct. 25, 12–15 (2009)

    Google Scholar 

  37. Nayfeh, A.H.: Method of Normal Forms. Wiley Interscience, Berlin (2011)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad R. Hajj.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abdelkefi, A., Hajj, M.R. & Nayfeh, A.H. Power harvesting from transverse galloping of square cylinder. Nonlinear Dyn 70, 1355–1363 (2012). https://doi.org/10.1007/s11071-012-0538-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-012-0538-4

Keywords

Navigation