Skip to main content

Advertisement

Log in

Vibratory energy exchange between a linear and a nonsmooth system in the presence of the gravity

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The concept of the vibratory energy transfer between a linear master DOF and a nonsmooth nonlinear energy sink (NES) in the presence of gravity forces is studied. Different invariant manifolds of the system at different time scales are revealed and necessary conditions for leading the behavior of the system to strongly modulated response (SMR) are enlightened.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Vakakis, A.F., Gendelman, O.V., Bergman, L.A., McFarland, D.M., Kerschen, G., Lee, Y.S.: Nonlinear targeted energy transfer. In: Mechanical and Structural Systems, I. Springer, Berlin (2009)

    Google Scholar 

  2. Vakakis, A.F., Gendelman, O.V., Bergman, L.A., McFarland, D.M., Kerschen, G., Lee, Y.S.: Nonlinear targeted energy transfer. In: Mechanical and Structural Systems, II. Springer, Berlin (2009)

    Google Scholar 

  3. Vakakis, A.F.: Inducing passive nonlinear energy sinks in vibrating systems. J. Vib. Acoust. 123, 324–332 (2001)

    Article  Google Scholar 

  4. Gendelman, O.V., Manevitch, L.I., Vakakis, A.F., M’Closkey, R.: Energy pumping in nonlinear mechanical oscillators I: dynamics of the underlying Hamiltonian systems. J. Appl. Mech. 68, 34–41 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  5. Vakakis, A.F., Gendelman, O.V.: Energy pumping in nonlinear mechanical oscillators II: resonance capture. J. Appl. Mech. 68, 42–48 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  6. Gendelman, O.V.: Bifurcations of nonlinear normal modes of linear oscillator with strongly nonlinear damped attachment. Nonlinear Dyn. 37, 115–128 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  7. Gendelman, O.V., Lamarque, C.-H.: Dynamics of linear oscillator coupled to strongly nonlinear attachment with multiple states of equilibrium. Chaos Solitons Fractals 24, 501–509 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  8. Gendelman, O.V., Gourdon, E., Lamarque, C.-H.: Quasiperiodic energy pumping in coupled oscillators under periodic forcing. J. Sound Vib. 294, 651–662 (2006)

    Article  Google Scholar 

  9. Manevitch, L.I., Gourdon, E., Lamarque, C.-H.: Parameters optimization for energy pumping in strongly nonhomogeneous 2 DoF system. Chaos Solitons Fractals 31, 900–911 (2007)

    Article  Google Scholar 

  10. Manevitch, L.I., Musienko, A.I., Lamarque, C.-H.: New analytical approach to energy pumping problem in strongly non homogeneous 2 DoF systems. Meccanica 42, 77–83 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  11. Manevitch, L.I., Gourdon, E., Lamarque, C.-H.: Towards the design of an optimal energetic sink in a strongly inhomogeneous two-degree-of-freedom system. Trans. Am. Soc. Mech. Eng. 74, 1078–1086 (2007)

    Article  Google Scholar 

  12. Starosvetsky, Y., Gendelman, O.V.: Vibration absorption in systems with nonlinear energy sink: nonlinear damping. J. Sound Vib. 324, 916–939 (2009)

    Article  Google Scholar 

  13. Starosvetsky, Y., Gendelman, O.V.: Interaction of nonlinear energy sink with a two degrees of freedom linear system: internal resonance. J. Sound Vib. 329, 1836–1852 (2010)

    Article  Google Scholar 

  14. Gendelman, O.V., Sapsis, T., Vakakis, A.F., Bergman, L.A.: Enhanced passive targeted energy transfer in strongly nonlinear mechanical oscillators. J. Sound Vib. 330, 1–8 (2010)

    Article  Google Scholar 

  15. Pham, T.T., Pernot, S., Lamarque, C.-H.: Competitive energy transfer between a two degree-of-freedom dynamic system and an absorber with essential nonlinearity. Nonlinear Dyn. 62, 573–592 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  16. Viguié, R., Kerschen, G.: On the functional form of a nonlinear vibration absorber. J. Sound Vib. 329, 5225–5232 (2010)

    Article  Google Scholar 

  17. Pham, T.T., Lamarque, C.-H., Pernot, S.: Passive control of one degree of freedom nonlinear quadratic oscillator under combination resonance. Commun. Nonlinear Sci. Numer. Simul. 16, 2279–2288 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  18. Pham, T.T., Lamarque, C.-H., Ture Savadkoohi, A., Pernot, S.: Multiple resonance capture of a compound system under harmonic excitation. Eur. J. Comput. Mech. 20, 125–142 (2011)

    Google Scholar 

  19. Pham, T.T., Lamarque, C.-H., Ture Savadkoohi, A.: Multi-resonance capturing in a two-degree-of-freedom system under two different harmonic excitations. J. Vib. Control 18, 451–466 (2012)

    Article  MathSciNet  Google Scholar 

  20. Ture Savadkoohi, A., Manevitch, L.I., Lamarque, C.-H.: Analysis of the transient behavior in a two DOF nonlinear system. Chaos Solitons Fractals 44, 450–463 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  21. Vaurigaud, B., Manevitch, L.I., Lamarque, C.-H.: Passive control of aeroelastic instability in a long span bridge model prone to coupled flutter using targeted energy transfer. J. Sound Vib. 330, 2580–2595 (2011)

    Article  Google Scholar 

  22. Vaurigaud, B., Ture Savadkoohi, A., Lamarque, C.-H.: Targeted energy transfer with parallel nonlinear energy sinks. Part I: design theory and numerical results. Nonlinear Dyn. 66, 763–780 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  23. Vaurigaud, B., Ture Savadkoohi, A., Lamarque, C.-H.: Efficient targeted energy transfer with parallel nonlinear energy sinks: theory and experiments. Journal of Computational and Nonlinear Dynamics 6, 041005 (2011). 10 pages

    Article  Google Scholar 

  24. McFarland, D.M., Bergman, L., Vakakis, A.F.: Experimental study of non-linear energy pumping occurring at a single fast frequency. Int. J. Non-Linear Mech. 40, 891–899 (2005)

    Article  MATH  Google Scholar 

  25. McFarland, D.M., Kerschen, G., Kowtko, J.J., Lee, Y.S., Bergman, L.A., Vakakis, A.F.: Experimental investigation of targeted energy transfers in strongly and nonlinearly coupled oscillators. J. Acoust. Soc. Am. 118, 791–799 (2005)

    Article  Google Scholar 

  26. Kerschen, G., Kowtko, J.J., McFarland, D.M., Bergman, L.A., Vakakis, A.F.: Theoretical and experimental study of multimodal targeted energy transfer in a system of coupled oscillators. Nonlinear Dyn. 47, 285–309 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  27. Kerschen, G., Kowtko, J.J., McFarland, D.M., Lee, Y.S., Bergman, L.A., Vakakis, A.F.: Experimental demonstration of transient resonance capture in a system of two coupled oscillators with essential stiffness nonlinearity. J. Sound Vib. 299, 822–838 (2007)

    Article  Google Scholar 

  28. Gourdon, E., Alexander, N.A., Taylor, C.A., Lamarque, C.-H., Pernot, S.: Nonlinear energy pumping under transient forcing with strongly nonlinear coupling: theoretical and experimental results. J. Sound Vib. 300, 522–551 (2007)

    Article  Google Scholar 

  29. Gourdon, E., Lamarque, C.-H., Pernot, S.: Contribution to efficiency of irreversible passive energy pumping with a strong nonlinear attachment. Nonlinear Dyn. 50, 793–808 (2007)

    Article  MATH  Google Scholar 

  30. Lee, Y.S., Kerschen, G., McFarland, D.M., Hill, W.J., Nichkawde, C., Strganac, T.W., Bergman, L.A., Vakakis, A.F.: Suppressing aeroelastic instability using broadband passive targeted energy transfers. Part 2. Experiments. AIAA J. 45, 2391–2400 (2007)

    Article  Google Scholar 

  31. Lee, Y.S., Vakakis, A.F., Bergman, L.A., McFarland, D.M., Kerschen, G., Nucera, F., Tsakirtzis, S., Panagopoulos, P.N.: Passive non-linear targeted energy transfer and its applications to vibration absorption: a review. Proc. Inst. Mech. Eng., Proc., Part K, J. Multi-Body Dyn. 222, 77–134 (2008)

    Google Scholar 

  32. Lee, Y.S., Vakakis, A.F., McFarland, D.M., Bergman, L.A.: Non-linear system identification of the dynamics of aeroelastic instability suppression based on targeted energy transfers. Aeronaut. J. 114, 61–82 (2010)

    Google Scholar 

  33. Ture Savadkoohi, A., Vaurigaud, B., Lamarque, C.-H., Pernot, S.: Targeted energy transfer with parallel nonlinear energy sinks. Part II. Theory and experiments. Nonlinear Dyn. 67, 37–46 (2012)

    Article  MATH  Google Scholar 

  34. Nucera, F., Vakakis, A.F., McFarland, D.M., Bergman, L.A., Kerschen, G.: Targeted energy transfers in vibro-impact oscillators for seismic mitigation. Nonlinear Dyn. 50, 651–677 (2007)

    Article  MATH  Google Scholar 

  35. Lee, Y.S., Nucera, F., Vakakis, A.F., McFarland, D.M., Bergman, L.A.: Periodic orbits, damped transitions and targeted energy transfers in oscillators with vibro-impact attachments. Physica D 238, 1868–1896 (2009)

    Article  MATH  Google Scholar 

  36. Gendelman, O.V.: Targeted energy transfer in systems with non-polynomial nonlinearity. J. Sound Vib. 315, 732–745 (2008)

    Article  Google Scholar 

  37. Shmidt, F., Lamarque, C.-H.: Energy pumping for mechanical systems involving non-smooth Saint-Venant terms. Int. J. Non-Linear Mech. 45, 866–875 (2010)

    Article  Google Scholar 

  38. Lamarque, C.-H., Gendelman, O.V., Ture Savadkoohi, A., Etcheverria, E.: Targeted energy transfer in mechanical systems by means of non-smooth nonlinear energy sink. Acta Mech. 221, 175–200 (2011)

    Article  MATH  Google Scholar 

  39. Manevitch, L.I.: The description of localized normal modes in a chain of nonlinear coupled oscillators using complex variables. Nonlinear Dyn. 25, 95–109 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  40. Nayfeh, A.H., Mook, D.T.: Nonlinear Oscillations, vol. 720. Wiley, New York (1979)

    MATH  Google Scholar 

  41. Starosvetsky, Y., Gendelman, O.V.: Strongly modulated response in forced 2DOF oscillatory system with essential mass and potential asymmetry. Physica D 237, 1719–1733 (2008)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the “PSA Peugeot Citroën Automobiles” for supporting this research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alireza Ture Savadkoohi.

Appendix

Appendix

Let us assume the illustrated nonsmooth NES behavior in Fig. 10. In the general case, we have:

(52)

We are interested to evaluate the zero and the first Fourier coefficients of the system which are represented in (12) and (13). If \({\frac{b_{2}}{\omega}}+{\frac{|\varphi_{2}|}{\omega}} \leq\delta\), then f f =0 and f z =0. We have:

(53)
(54)
Fig. 10
figure 10

Schematics of the behavior of the nonsmooth NES with respect to the time in a loop

Where,

(55)
(56)
(57)
(58)

Integrals of Eqs. (54) and (53) give systems of (15) and (16) (\(f_{f}=-{\frac{i \varphi_{2}}{2}}G_{f} (|\varphi_{2}|^{2} )\)).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ture Savadkoohi, A., Lamarque, CH. & Dimitrijevic, Z. Vibratory energy exchange between a linear and a nonsmooth system in the presence of the gravity. Nonlinear Dyn 70, 1473–1483 (2012). https://doi.org/10.1007/s11071-012-0548-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-012-0548-2

Keywords

Navigation