Skip to main content
Log in

Adaptive sliding mode control of dynamic system using RBF neural network

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper presents a robust adaptive sliding mode control strategy using radial basis function (RBF) neural network (NN) for a class of time varying system in the presence of model uncertainties and external disturbance. Adaptive RBF neural network controller that can learn the unknown upper bound of model uncertainties and external disturbances is incorporated into the adaptive sliding mode control system in the same Lyapunov framework. The proposed adaptive sliding mode controller can on line update the estimates of system dynamics. The asymptotical stability of the closed-loop system, the convergence of the neural network weight-updating process, and the boundedness of the neural network weight estimation errors can be strictly guaranteed. Numerical simulation for a MEMS triaxial angular velocity sensor is investigated to verify the effectiveness of the proposed adaptive RBF sliding mode control scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Guo, Y., Woo, P.: An adaptive fuzzy sliding mode controller for robotic manipulators. IEEE Trans. Syst. Man Cybern., Part A, Syst. Hum. 33(2), 149–159 (2004)

    Google Scholar 

  2. Wai, R.J.: Fuzzy sliding-mode control using adaptive tuning technique. IEEE Trans. Ind. Electron. 54(1), 586–594 (2007)

    Article  Google Scholar 

  3. Lewis, F.L., Jagannathan, S., Yesildirek, A.: Neural Network Control of Robot Manipulators. Taylor & Francis, London (1999)

    Google Scholar 

  4. Sadati, N., Ghadami, R.: Adaptive multi-model sliding mode control of robotic manipulators using soft computing. Neurocomputing 71(2), 2702–2710 (2008)

    Article  Google Scholar 

  5. Park, B., Yoo, S., Park, J., Choi, Y.: Adaptive neural sliding mode control of nonholonomic wheeled mobile robots with model uncertainty. IEEE Trans. Control Syst. Technol. 17(1), 207–214 (2009)

    Article  Google Scholar 

  6. Xu, D., Zhao, D., Yi, J., Tan, X.: Trajectory tracking control of omnidirectional wheeled mobile manipulators: robust neural network-based sliding mode approach. IEEE Trans. Syst. Man Cybern., Part B, Cybern. 39(3), 788–799 (2009)

    Article  Google Scholar 

  7. Lee, M., Choi, Y.: An adaptive neurocontroller using RBFN for robot manipulators. IEEE Trans. Ind. Electron. 51(3), 711–717 (2004)

    Article  Google Scholar 

  8. Lin, F., Chen, S., Shyu, K.: Robust dynamic sliding-mode control using adaptive RENN for magnetic levitation system. IEEE Trans. Neural Netw. 20(6), 938–951 (2009)

    Article  Google Scholar 

  9. Chien, Y., Wang, W., Leu, Y., Lee, T.: Robust adaptive controller design for a class of uncertain nonlinear systems using online T–S fuzzy-neural modeling approach. IEEE Trans. Syst. Man Cybern., Part B, Cybern. 41(2), 542–552 (2011)

    Article  Google Scholar 

  10. Dierks, T., Jagannathan, S.: Neural network output feedback control of robot formations. IEEE Trans. Syst. Man Cybern., Part B, Cybern. 40(2), 383–399 (2010)

    Article  Google Scholar 

  11. Man, Z., Yu, X., Eshraghian, K., Palaniswami, M.: A robust adaptive sliding mode tracking control using an RBF neural network for robotic manipulators. In: Proceedings of IEEE, International Conference on Neural Networks, vol. 5, Perth, MA, USA, pp. 2403–2408 (1995)

    Chapter  Google Scholar 

  12. Man, Z., Wu, H., Palaniswami, M.: An adaptive tracking controller using neural networks for a class of nonlinear systems. IEEE Trans. Neural Netw. 9(5), 947–955 (1998)

    Article  Google Scholar 

  13. Wen, G., Liu, Y.: Adaptive fuzzy-neural tracking control for uncertain nonlinear discrete-time systems in the NARMAX form. Nonlinear Dyn. 66(4), 745–753 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  14. Wang, H., Chen, B., Lin, C.: Direct adaptive neural control for strict-feedback stochastic nonlinear systems. Nonlinear Dyn. 67(4), 2703–2718 (2012)

    Article  MATH  Google Scholar 

  15. Forouzantabar, A., Talebi, H.A., Sedigh, A.K.: Adaptive neural network control of bilateral teleoperation with constant time delay. Nonlinear Dyn. 67(2), 1123–1134 (2012)

    Article  MATH  Google Scholar 

  16. Zhang, T., Ge, S.: Adaptive neural network tracking control of MIMO nonlinear systems with unknown dead zones and control directions. IEEE Trans. Neural Netw. 20(3), 483–497 (2009)

    Article  MathSciNet  Google Scholar 

  17. Fei, J.: Robust adaptive vibration tracking control for a MEMS vibratory gyroscope with bound estimation. IET Control Theory Appl. 4(6), 1019–1026 (2010)

    Article  Google Scholar 

  18. John, J., Vinay, T.: Novel concept of a single mass adaptively controlled triaxial angular velocity sensor. IEEE Sens. J. 6(3), 588–595 (2006)

    Article  Google Scholar 

Download references

Acknowledgements

This work is partially supported by National Science Foundation of China under Grant No. 61074056, the Natural Science Foundation of Jiangsu Province under Grant No. BK2010201, and the Fundamental Research Funds for the Central Universities under Grant No. 2012B06714.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juntao Fei.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fei, J., Ding, H. Adaptive sliding mode control of dynamic system using RBF neural network. Nonlinear Dyn 70, 1563–1573 (2012). https://doi.org/10.1007/s11071-012-0556-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-012-0556-2

Keywords

Navigation