Skip to main content
Log in

On the dynamics of tapping mode atomic force microscope probes

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

A mathematical model is developed to investigate the grazing dynamics of tapping mode atomic force microscopes (AFM) subjected to a base harmonic excitation. A multimode Galerkin approximation is utilized to discretize the nonlinear partial differential equation of motion governing the cantilever response and associated boundary conditions and obtain a set of nonlinearly coupled ordinary differential equations governing the time evolution of the system dynamics. A comprehensive numerical analysis is performed for a wide range of the excitation amplitude and frequency. The tip oscillations are examined using nonlinear dynamic tools through several examples. The non-smoothness in the tip/sample interaction model is treated rigorously. A higher-mode Galerkin analysis indicates that period doubling bifurcations and chaotic vibrations are possible in tapping mode microscopy for certain operating parameters. It is also found that a single-mode Galerkin approximation, which accurately predicts the tip nonlinear responses far from the sample, is not adequate for predicting all of the nonlinear phenomena exhibited by an AFM, such as grazing bifurcations, and leads to both quantitative and qualitative errors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Raman, A., Melcher, J., Tung, R.: Cantilever dynamics in atomic force microscopy. Nano Today 3, 20–27 (2008)

    Article  Google Scholar 

  2. Giessibl, F.J.: Advances in atomic force microscopy. Rev. Mod. Phys. 75, 949–983 (2003)

    Article  Google Scholar 

  3. Garcia, R., Perez, R.: Dynamic atomic force microscopy methods. Surf. Sci. Rep. 47, 197–301 (2002)

    Article  MATH  Google Scholar 

  4. Garcia, R., Paulo, A.S.: Attractive and repulsive tip-sample interaction regimes in tapping-mode atomic force microscopy. Phys. Rev. B 60, 4961–4967 (1999)

    Article  Google Scholar 

  5. Paulo, A.S., Garcia, R.: Unifying theory of tapping-mode atomic-force microscopy. Phys. Rev. B 66, 041406(R) (2002)

    Article  Google Scholar 

  6. Paulo, A.S., Garcia, R.: High-resolution imaging of antibodies by tapping-mode atomic force microscopy: attractive and repulsive tip-sample interaction regimes. Biophys. J. 78, 1599–1605 (2000)

    Article  Google Scholar 

  7. Magerle, R.: Nanotomography. Phys. Rev. Lett. 85(13), 2749–2752 (2000)

    Article  Google Scholar 

  8. Paulo, A.S., Garcia, R.: Tip-surface forces, amplitude, and energy dissipation in amplitude-modulation (tapping mode) force microscopy. Phys. Rev. B 64, 193411 (2001)

    Article  Google Scholar 

  9. Marth, M., Maier, D., Honerkamp, J., Brandsch, R., Bar, G.: A unifying view on some experimental effects in tapping-mode atomic force microscopy. J. Appl. Phys. 85, 7030–7036 (1999)

    Article  Google Scholar 

  10. Van de Water, W., Molenaar, J.: Dynamics of vibrating atomic force microscopy. Nanotechnology 11, 192–199 (2000)

    Article  Google Scholar 

  11. Zitzler, L., Herminghaus, S., Mugele, F.: Capillary forces in tapping mode atomic force microscopy. Phys. Rev. B 66, 155436 (2002)

    Article  Google Scholar 

  12. Hashemi, N., Dankowicz, H., Paul, M.R.: The nonlinear dynamics of tapping mode atomic force microscopy with capillary force interactions. J. Appl. Phys. 103, 093512 (2008)

    Article  Google Scholar 

  13. Misra, S., Dankowicz, H., Paul, M.R.: Degenerate discontinuity-induced bifurcations in tapping-mode atomic-force microscopy. Physica D 239, 33–43 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  14. Lee, S.I., Howell, S.W., Raman, A., Reifenberger, R.: Nonlinear dynamic perspectives on dynamic force microscopy. Ultramicroscopy 97, 185–198 (2003)

    Article  Google Scholar 

  15. Lee, S.I., Howell, S.W., Raman, A., Reifenberger, R.: Nonlinear dynamics of microcantilevers in tapping mode atomic force microscopy: a comparison between theory and experiment. Phys. Rev. B 66, 115409 (2002)

    Article  Google Scholar 

  16. Nayfeh, A.H., Mook, D.T.: Nonlinear Oscillations. Wiley, New York (1995)

    Book  Google Scholar 

  17. Nayfeh, A.H., Balachandran, B.: Applied Nonlinear Dynamics: Analytical, Computational, and Experimental Methods. Wiley, New York (1995)

    Book  MATH  Google Scholar 

  18. Stark, M., Stark, R.W., Heckl, W.M., Guckenberger, R.: Inverting dynamic force microscopy: from signals to time-resolved interaction forces. Proc. Natl. Acad. Sci. USA 99(13), 8473–8478 (2002)

    Article  Google Scholar 

  19. Rodriguez, T.R., Garcia, R.: Tip motion in amplitude modulation (tapping-mode) atomic-force microscopy: comparison between continuous and point-mass models. Appl. Phys. Lett. 80(9), 1646–1648 (2002)

    Article  Google Scholar 

  20. Basak, S., Raman, A.: Dynamics of tapping mode atomic force microscopy in liquids: theory and experiments. Appl. Phys. Lett. 91, 064107 (2007)

    Article  Google Scholar 

  21. Kiracofe, D., Raman, A.: On eigenmodes, stiffness, and sensitivity of atomic force microscope cantilevers in air versus liquids. J. Appl. Phys. 107, 033506 (2010)

    Article  Google Scholar 

  22. Lozano, J.R., Kiracofe, D., Melcher, J., Garcia, R., Raman, A.: Calibration of higher eigenmode spring constants of atomic force microscope cantilevers. Nanotechnology 21, 465502 (2010)

    Article  Google Scholar 

  23. Rodriguez, T.R., Garcia, R.: Compositional mapping of surfaces in atomic force microscopy by excitation of the second normal mode of the microcantilever. Appl. Phys. Lett. 84(3), 449–451 (2004)

    Article  Google Scholar 

  24. Lozano, J.R., Garcia, R.: Theory of phase spectroscopy in bimodal atomic force microscopy. Phys. Rev. B 79, 014110 (2009)

    Article  Google Scholar 

  25. Emam, S.A., Nayfeh, A.H.: On the nonlinear dynamics of a buckled beam subjected to a primary-resonance excitation. Nonlinear Dyn. 35, 1–17 (2004)

    Article  MATH  Google Scholar 

  26. Emam, S.A., Nayfeh, A.H.: Nonlinear responses of buckled beams to subharmonic-resonance excitations. Nonlinear Dyn. 35, 105–122 (2004)

    Article  MATH  Google Scholar 

  27. Moreno-Moreno, M., Raman, A., Gomez-Herrero, J., Reifenberger, R.: Parametric resonance based scanning probe microscopy. Appl. Phys. Lett. 88(19), 193108 (2006)

    Article  Google Scholar 

  28. Acary, V., Bernard, B.: Numerical Methods for Non-smooth Dynamical Systems. Springer, Berlin (2008)

    Google Scholar 

  29. Chin, W., Ott, E., Nusse, H.E., Grebogi, C.: Grazing bifurcations in impact oscillators. Phys. Rev. E 50, 4427–4450 (1994)

    Article  MathSciNet  Google Scholar 

  30. Long, X.H., Lin, G., Balachandran, B.: Grazin bifurcations in an elastic structure excited by harmonicimactor motions. Physica D 237, 1129–1138 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  31. Dick, A.J., Balachandran, B., Yabuno, H., Numatsu, M., Hayashi, K., Kuroda, M., Ashida, K.: Utilizing nonlinear phenomena to locate grazing in the constrained motion of a cantilever beam. Nonlinear Dyn. 57, 335–349 (2009)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arash Bahrami.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bahrami, A., Nayfeh, A.H. On the dynamics of tapping mode atomic force microscope probes. Nonlinear Dyn 70, 1605–1617 (2012). https://doi.org/10.1007/s11071-012-0560-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-012-0560-6

Keywords

Navigation