Skip to main content
Log in

Sliding mode control with adaptive fuzzy dead-zone compensation for uncertain chaotic systems

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The dead-zone nonlinearity is frequently encountered in many industrial automation equipments and its presence can severely compromise control system performance. In this work, an adaptive variable structure controller is proposed to deal with a class of uncertain nonlinear systems subject to an unknown dead-zone input. The adopted approach is primarily based on the sliding mode control methodology but enhanced by an adaptive fuzzy algorithm to compensate the dead-zone. Using Lyapunov stability theory and Barbalat’s lemma, the convergence properties of the closed-loop system are analytically proven. In order to illustrate the controller design methodology, an application of the proposed scheme to a chaotic pendulum is introduced. A comparison between the stabilization of general orbits and unstable periodic orbits embedded in chaotic attractor is carried out showing that the chaos control can confer flexibility to the system by changing the response with low power consumption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Alasty, A., Salarieh, H.: Controlling the chaos using fuzzy estimation of OGY and Pyragas controllers. Chaos Solitons Fractals 26(2), 379–392 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  2. Auerbach, D., Cvitanović, P., Eckmann, J.P., Gunaratne, G., Procaccia, I.: Exploring chaotic motion through periodic orbits. Phys. Rev. Lett. 58(23), 2387–2389 (1987)

    Article  MathSciNet  Google Scholar 

  3. Bessa, W.M.: Some remarks on the boundedness and convergence properties of smooth sliding mode controllers. Int. J. Autom. Comput. 6(2), 154–158 (2009)

    Article  Google Scholar 

  4. Bessa, W.M., Barrêto, R.S.S.: Adaptive fuzzy sliding mode control of uncertain nonlinear systems. Control. Autom. 21(2), 117–126 (2010)

    Google Scholar 

  5. Bessa, W.M., Dutra, M.S., Kreuzer, E.: Depth control of remotely operated underwater vehicles using an adaptive fuzzy sliding mode controller. Robot. Auton. Syst. 56(8), 670–677 (2008)

    Article  Google Scholar 

  6. Bessa, W.M., De Paula, A.S., Savi, M.A.: Chaos control using an adaptive fuzzy sliding mode controller with application to a nonlinear pendulum. Chaos Solitons Fractals 42(2), 784–791 (2009)

    Article  MATH  Google Scholar 

  7. Bessa, W.M., Dutra, M.S., Kreuzer, E.: An adaptive fuzzy dead-zone compensation scheme and its application to electro-hydraulic systems. J. Braz. Soc. Mech. Sci. Eng. 32(1), 1–7 (2010)

    Article  Google Scholar 

  8. Bessa, W.M., Dutra, M.S., Kreuzer, E.: An adaptive fuzzy sliding mode controller for remotely operated underwater vehicles. Robot. Auton. Syst. 58(1), 16–26 (2010)

    Article  Google Scholar 

  9. Bessa, W.M., Dutra, M.S., Kreuzer, E.: Sliding mode control with adaptive fuzzy dead-zone compensation of an electro-hydraulic servo-system. J. Intell. Robot. Syst. 58(1), 3–16 (2010)

    Article  MATH  Google Scholar 

  10. Boulkroune, A., M’Saad, M.: A fuzzy adaptive variable-structure control scheme for uncertain chaotic MIMO systems with sector nonlinearities and dead-zones. Expert Syst. Appl. 38(12), 14744–14750 (2011)

    Article  Google Scholar 

  11. Chang, W., Park, J.B., Joo, Y.H., Chen, G.: Design of robust fuzzy-model-based controller with sliding mode control for SISO nonlinear systems. Fuzzy Sets Syst. 125(1), 1–22 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  12. Corradini, M.L., Orlando, G.: Robust stabilization of nonlinear uncertain plants with backlash or dead zone in the actuator. IEEE Trans. Control Syst. Technol. 10(1), 158–166 (2002)

    Article  Google Scholar 

  13. Cybenko, G.: Approximations by superpositions of sigmoidal functions. Math. Control Signals Syst. 2(4), 303–314 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  14. De Paula, A.S., Savi, M.A., Pereira-Pinto, F.H.I.: Chaos and transient chaos in an experimental nonlinear pendulum. J. Sound Vib. 294(3), 585–595 (2006)

    Article  Google Scholar 

  15. Filippov, A.F.: Differential Equations with Discontinuous Right-hand Sides. Kluwer, Dordrecht (1988)

    MATH  Google Scholar 

  16. Franca, L.F.P., Savi, M.A.: Distinguishing periodic and chaotic time series obtained from an experimental nonlinear pendulum. Nonlinear Dyn. 26(3), 253–271 (2001)

    Article  Google Scholar 

  17. Fuh, C.C., Tung, P.C.: Robust control for a class of nonlinear oscillators with chaotic attractors. Phys. Lett. A 218(3–6), 240–248 (1996)

    Article  Google Scholar 

  18. Hojati, M., Gazor, S.: Hybrid adaptive fuzzy identification and control of nonlinear systems. IEEE Trans. Fuzzy Syst. 10(2), 198–210 (2002)

    Article  Google Scholar 

  19. Hornik, K.: Approximation capabilities of multilayer feedforward networks. Neural Netw. 4(2), 251–257 (1991)

    Article  Google Scholar 

  20. Hu, C., Yao, B., Wang, Q.: Adaptive robust precision motion control of systems with unknown input dead-zones: a case study with comparative experiments. IEEE Trans. Ind. Electron. 58(6), 2454–2464 (2011)

    Article  Google Scholar 

  21. Hua, C.C., Ding, S.X.: Model following controller design for large-scale systems with time-delay interconnections and multiple dead-zone inputs. IEEE Trans. Autom. Control 56(4), 962–968 (2011)

    Article  MathSciNet  Google Scholar 

  22. Hua, C.C., Wang, Q.G., Guan, X.P.: Adaptive tracking controller design of nonlinear systems with time delays and unknown dead-zone input. IEEE Trans. Autom. Control 53(7), 1753–1759 (2008)

    Article  MathSciNet  Google Scholar 

  23. Ibrir, S., Su, C.Y.: Simultaneous state and dead-zone parameter estimation for a class of bounded-state nonlinear systems. IEEE Trans. Control Syst. Technol. 19(4), 911–919 (2011)

    Article  Google Scholar 

  24. Ibrir, S., Xie, W.F., Su, C.Y.: Adaptive tracking of nonlinear systems with non-symmetric dead-zone input. Automatica 43(4), 522–530 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  25. Khalil, H.K.: Nonlinear Systems, 3rd edn. Prentice Hall, New Jersey (2001)

    Google Scholar 

  26. Kim, J.H., Park, J.H., Lee, S.W., Chong, E.K.P.: A two-layered fuzzy logic controller for systems with deadzones. IEEE Trans. Ind. Electron. 41(2), 155–162 (1994)

    Article  Google Scholar 

  27. Konishi, K., Hirai, M., Kokame, H.: Sliding mode control for a class of chaotic systems. Phys. Lett. A 245(6), 511–517 (1998)

    Article  Google Scholar 

  28. Kosko, B.: Fuzzy systems as universal approximators. IEEE Trans. Comput. 43(11), 1329–1333 (1994)

    Article  MATH  Google Scholar 

  29. Kung, C.C., Chen, T.H.: Observer-based indirect adaptive fuzzy sliding mode control with state variable filters for unknown nonlinear dynamical systems. Fuzzy Sets Syst. 155(2), 292–308 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  30. Lewis, F.L., Tim, W.K., Wang, L.Z., Li, Z.X.: Deadzone compensation in motion control systems using adaptive fuzzy logic control. IEEE Trans. Control Syst. Technol. 7(6), 731–742 (1999)

    Article  Google Scholar 

  31. Liu, Y.J., Wang, W.: Adaptive fuzzy control for a class of uncertain nonaffine nonlinear systems. Inf. Sci. 177(18), 3901–3917 (2007)

    Article  MATH  Google Scholar 

  32. Liu, Y.J., Zheng, Y.Q.: Adaptive robust fuzzy control for a class of uncertain chaotic systems. Nonlinear Dyn. 57(3), 431–439 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  33. Liu, Y.J., Zhou, N.: Observer-based adaptive fuzzy-neural control for a class of uncertain nonlinear systems with unknown dead-zone input. ISA Trans. 49(4), 462–469 (2010)

    Article  Google Scholar 

  34. Liu, Y.J., Tong, S.C., Wang, W.: Adaptive fuzzy output tracking control for a class of uncertain nonlinear systems. Fuzzy Sets Syst. 160(19), 2727–2754 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  35. Liu, Y.J., Wang, W., Tong, S.C., Liu, Y.S.: Robust adaptive tracking control for nonlinear systems based on bounds of fuzzy approximation parameters. IEEE Trans. Syst. Man Cybern., Part A, Syst. Hum. 40(1), 170–184 (2010)

    Article  Google Scholar 

  36. Liu, Y.J., Chen, C.L.P., Wen, G.X., Tong, S.: Adaptive neural output feedback tracking control for a class of uncertain discrete-time nonlinear systems. IEEE Trans. Neural Netw. 22(7), 1162–1167 (2011)

    Article  Google Scholar 

  37. Liu, Y.J., Wang, W., Li, T.S.: Observer-based adaptive fuzzy tracking control for a class of uncertain nonlinear MIMO systems. Fuzzy Sets Syst. 164(1), 25–44 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  38. Liu, Y.J., Wang, W., Wang, D., Li, T.S., Chen, C.L.P.: Adaptive neural output feedback controller design with reduced-order observer for a class of uncertain nonlinear SISO systems. IEEE Trans. Neural Netw. 22(8), 1328–1334 (2011)

    Article  Google Scholar 

  39. Ma, H.J., Yang, G.H.: Adaptive output control of uncertain nonlinear systems with non-symmetric dead-zone input. Automatica 46(2), 413–420 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  40. Mekircha, N., Mansouri, A.B.N.: Fuzzy control of original UPOs of unknown discrete chaotic systems. Appl. Math. Model. 36(10), 5135–5142 (2012)

    Article  Google Scholar 

  41. Na, J., Ren, X., Herrmann, G., Qiao, Z.: Adaptive neural dynamic surface control for servo systems with unknown dead-zone. Control Eng. Pract. 19(11), 1328–1343 (2011)

    Article  Google Scholar 

  42. Noroozi, N., Roopaei, M., Karimaghaee, P., Safavi, A.A.: Simple adaptive variable structure control for unknown chaotic systems. Commun. Nonlinear Sci. Numer. Simul. 15(3), 707–727 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  43. Oh, S.Y., Park, D.J.: Design of new adaptive fuzzy logic controller for nonlinear plants with unknown or time-varying dead zones. IEEE Trans. Fuzzy Syst. 6(4), 482–491 (1998)

    Article  Google Scholar 

  44. Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Comput. 3(2), 246–257 (1991)

    Article  Google Scholar 

  45. Pereira-Pinto, F.H.I., Ferreira, A.M., Savi, M.A.: Chaos control in a nonlinear pendulum using a semi-continuous method. Chaos Solitons Fractals 22(3), 653–668 (2004)

    Article  MATH  Google Scholar 

  46. Poursamad, A., Davaie-Markazi, A.H.: Robust adaptive fuzzy control of unknown chaotic systems. Appl. Soft Comput. 9(3), 970–976 (2009)

    Article  Google Scholar 

  47. Roopaei, M., Sahraei, B.R., Lin, T.C.: Adaptive sliding mode control in a novel class of chaotic systems. Commun. Nonlinear Sci. Numer. Simul. 15(12), 4158–4170 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  48. S̆elmić, R.R., Lewis, F.L.: Deadzone compensation in motion control systems using neural networks. IEEE Trans. Autom. Control 45(4), 602–613 (2000)

    Article  Google Scholar 

  49. Shen, D., Mu, Y., Xiong, G.: Iterative learning control for non-linear systems with deadzone input and time delay in presence of measurement noise. IET Control Theory Appl. 5(12), 1418–1425 (2011)

    Article  MathSciNet  Google Scholar 

  50. Shyu, K.K., Liu, W.J., Hsu, K.C.: Design of large-scale time-delayed systems with dead-zone input via variable structure control. Automatica 41(7), 1239–1246 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  51. Slotine, J.J.E.: Sliding controller design for nonlinear systems. Int. J. Control 40(2), 421–434 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  52. Su, J.P., Chen, T.M., Wang, C.C.: Adaptive fuzzy sliding mode control with GA-based reaching laws. Fuzzy Sets Syst. 120(1), 145–158 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  53. Tao, G., Kokotović, P.V.: Adaptive control of plants with unknown dead-zones. IEEE Trans. Autom. Control 39(1), 59–68 (1994)

    Article  MATH  Google Scholar 

  54. Tong, S., Li, Y.: Adaptive fuzzy output feedback tracking backstepping control of strict-feedback nonlinear systems with unknown dead zones. IEEE Trans. Fuzzy Syst. 20(1), 168–180 (2012)

    Article  Google Scholar 

  55. Tsai, C.H., Chuang, H.T.: Deadzone compensation based on constrained RBF neural network. J. Franklin Inst. 341(4), 361–374 (2004)

    Article  MATH  Google Scholar 

  56. Tsai, H.H., Fuh, C.C., Chang, C.N.: A robust controller for chaotic systems under external excitation. Chaos Solitons Fractals 14(4), 627–632 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  57. Wang, L.X.: Stable adaptive fuzzy control of nonlinear systems. IEEE Trans. Fuzzy Syst. 1(2), 146–155 (1993)

    Article  Google Scholar 

  58. Wang, J., Hu, J.: Robust adaptive neural control for a class of uncertain non-linear time-delay systems with unknown dead-zone non-linearity. IET Control Theory Appl. 5(15), 1782–1795 (2011)

    Article  MathSciNet  Google Scholar 

  59. Wang, X.S., Su, C.Y., Hong, H.: Robust adaptive control of a class of nonlinear systems with unknown dead-zone. Automatica 40(3), 407–413 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  60. Yan, J.J., Shyu, K.K., Lin, J.S.: Adaptive variable structure control for uncertain chaotic systems containing dead-zone nonlinearity. Chaos Solitons Fractals 25(2), 347–355 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  61. Yeşildirek, A., Lewis, F.L.: Feedback linearization using neural networks. Automatica 31(11), 1659–1664 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  62. Yildiz, Y., Sabanovic, A., Abidi, K.: Sliding-mode neuro-controller for uncertain systems. IEEE Trans. Ind. Electron. 54(3), 1676–1685 (2007)

    Article  Google Scholar 

  63. Yoo, B., Ham, W.: Adaptive fuzzy sliding mode control of nonlinear system. IEEE Trans. Fuzzy Syst. 6(2), 315–321 (1998)

    Article  Google Scholar 

  64. Yoo, S.J., Park, J.B., Choi, Y.H.: Decentralized adaptive stabilization of interconnected nonlinear systems with unknown non-symmetric dead-zone inputs. Automatica 45(2), 436–443 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  65. Yu, X.: Variable structure control approach for controlling chaos. Chaos Solitons Fractals 8(9), 1577–1586 (1997)

    Article  Google Scholar 

  66. Yu, X., Kaynak, O.: Sliding-mode control with soft computing: a survey. IEEE Trans. Ind. Electron. 56(9), 3275–3285 (2009)

    Article  Google Scholar 

  67. Yu, J., Chen, B., Yu, H.: Fuzzy-approximation-based adaptive control of the chaotic permanent magnet synchronous motor. Nonlinear Dyn. 69(3), 1479–1488 (2012)

    Article  Google Scholar 

  68. Zhang, T.P., Ge, S.S.: Adaptive neural control of MIMO nonlinear state time-varying delay systems with unknown dead-zones and gain signs. Automatica 43(6), 1021–1033 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  69. Zhang, T.P., Ge, S.S.: Adaptive dynamic surface control of nonlinear systems with unknown dead zone in pure feedback form. Automatica 44(7), 1895–1903 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  70. Zhang, T.P., Ge, S.S.: Adaptive neural network tracking control of MIMO nonlinear systems with unknown dead zones and control directions. IEEE Trans. Neural Netw. 20(3), 483–497 (2009)

    Article  MathSciNet  Google Scholar 

  71. Zhou, J.: Decentralized adaptive control for large-scale time-delay systems with dead-zone input. Automatica 44(7), 1790–1799 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  72. Zhou, J., Shen, X.Z.: Robust adaptive control of nonlinear uncertain plants with unknown dead-zone. IET Control Theory Appl. 1(1), 25–32 (2007)

    Article  MathSciNet  Google Scholar 

  73. Zhou, J., Wen, C., Zhang, Y.: Adaptive output control of nonlinear systems with uncertain dead-zone nonlinearity. IEEE Trans. Autom. Control 51(3), 504–511 (2006)

    Article  MathSciNet  Google Scholar 

  74. Zhou, N., Liu, Y.J., Tong, S.C.: Adaptive fuzzy output feedback control of uncertain nonlinear systems with nonsymmetric dead-zone input. Nonlinear Dyn. 63(4), 771–778 (2011)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the support of the Brazilian Research Agencies CNPq, CAPES, and FAPERJ, and through the INCT-EIE (National Institute of Science and Technology—Smart Structures in Engineering) the CNPq and FAPEMIG. The German Academic Exchange Service (DAAD) is also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wallace M. Bessa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bessa, W.M., de Paula, A.S. & Savi, M.A. Sliding mode control with adaptive fuzzy dead-zone compensation for uncertain chaotic systems. Nonlinear Dyn 70, 1989–2001 (2012). https://doi.org/10.1007/s11071-012-0591-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-012-0591-z

Keywords

Navigation