Skip to main content
Log in

Fuzzy adaptive dynamic surface control for a single-link flexible-joint robot

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper, a fuzzy adaptive controller is proposed for a single-link flexible-joint robot. Fuzzy logic systems are used to approximate unknown nonlinearities, and then a fuzzy state observer is designed to estimate the immeasurable states. By combining the adaptive backstepping design with dynamic surface control (DSC) technique, a fuzzy adaptive output-feedback backstepping control approach is developed. It is proved that all the signals of the resulting closed-loop system are semiglobally uniformly ultimately bounded (SGUUB), and both the observer and tracking errors converge to a small neighborhood of the origin by appropriate choosing the design parameters. The simulation results are provided to demonstrate the effectiveness of the proposed controller. Two key advantages of our scheme are that (i) the proposed control method does not require that the link velocity and actuator velocity of single-link flexible-joint robot be measured directly, and (ii) the problem of “explosion of complexity” is avoided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. De Luca, A., Book, W.: Robots with flexible elements. In: Siciliano, B., Khatib, O. (eds.) Springer Handbook of Robotics. Springer, Berlin (2008)

    Google Scholar 

  2. Ozgoli, S., Taghirad, T.D.: A survey on the control of flexible joint robots. Asian J. Control 8, 332–344 (2006)

    Article  MathSciNet  Google Scholar 

  3. Rodriguez, H., Astolfi, A., Ortega, R.: On the construction of static stabilizers and static output trackers for dynamically linearizable systems, related results and applications. Int. J. Control 79, 1523–1537 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  4. Spong, M.W., Vidyasagar, M.: Robot Dynamics and Control. Wiley, New York (1989)

    Google Scholar 

  5. Battilotti, S., Lanari, L., Ortega, R.: On the role of passivity and output injection in the output feedback stabilisation problem: application to robot control. Eur. J. Control 3, 92–103 (1997)

    Google Scholar 

  6. Brogliato, B., Lozano, R., Maschke, B., Egeland, O.: Dissipative Systems Analysis and Control, 2nd edn. Springer, London (2007)

    MATH  Google Scholar 

  7. Ott, C., Albu-Schaffer, A., Kugi, A., Hirzinger, G.: On the passivity-based impedance control of flexible joint robots. IEEE Trans. Robot. 24, 416–429 (2008)

    Article  Google Scholar 

  8. Ozgoli, S., Taghirad, H.D.: Fuzzy error governor: a practical approach to counter actuator saturation on flexible joint robots. Mechatronics 19, 993–1002 (2009)

    Article  Google Scholar 

  9. Gandhi, P.S., Ghorbel, F.: High-speed precision tracking with harmonic drive systems using integral manifold control design. Int. J. Control 78, 112–121 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  10. Huang, A.C., Chen, Y.C.: Adaptive sliding control for single-link flexible-joint robot with mismatched uncertainties. IEEE Trans. Control Syst. Technol. 12, 770–775 (2004)

    Article  Google Scholar 

  11. De Luca, A., Siciliano, B., Zollo, L.: PD control with on-line gravity compensation for robots with elastic joints: theory and experiments. Automatica 41, 1809–1819 (2005)

    Article  MATH  Google Scholar 

  12. Wang, W.S., Liu, C.H.: Controller design and implementation for industrial robots with flexible joints. IEEE Trans. Ind. Electron. 39, 379–391 (1992)

    Article  Google Scholar 

  13. Nicosia, S., Tomei, P.: Robot control by using only joint position measurements. IEEE Trans. Autom. Control 35, 1058–1061 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  14. Lightcap, C.A., Banks, S.A.: An extended Kalman filter for real-time estimation and control of a rigid-link flexible-joint manipulator. IEEE Trans. Control Syst. Technol. 18, 91–103 (2010)

    Article  Google Scholar 

  15. Melhem, K., Wang, W.: Global output tracking control of flexible joint robots via factorization of the manipulator mass matrix. IEEE Trans. Robot. 25, 428–437 (2009)

    Article  Google Scholar 

  16. Kristic, M., Kanellakopoulos, I., Kokotovic, P.V.: Nonlinear and Adaptive Control Design. Wiley, New York (1995)

    Google Scholar 

  17. Bang, J.S., Shim, H., Park, S.K., Seo, J.H.: Robust tracking and vibration suppression for a two-inertia system by combining backstepping approach with disturbance observer. IEEE Trans. Ind. Electron. 57, 3197–3206 (2010)

    Article  Google Scholar 

  18. Liu, C., Cheah, C.C., Slotine, J.J.E.: Adaptive task-space regulation of rigid-link flexible-joint robots with uncertain kinematics. Automatica 44, 1806–1814 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  19. Lozano, R., Brogliato, B.: Adaptive control of robot manipulators with flexible joints. IEEE Trans. Autom. Control 37, 174–181 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  20. Chang, Y.C., Yen, H.M.: Robust tracking control for a class of electrically driven flexible- joint robots without velocity measurements. Int. J. Control 85, 194–212 (2012)

    Article  MathSciNet  Google Scholar 

  21. Yim, W.: Adaptive control of a flexible joint manipulator. In: Proceedings of the 2001 IEEE International Conference on Robotics and Automation, Seoul, Korea, 21–26 May, 2001, pp. 3441–3446 (2001)

    Google Scholar 

  22. Wang, D., Huang, J.: Neural network-based adaptive dynamic surface control for a class of uncertain nonlinear systems in strict-feedback form. IEEE Trans. Neural Netw. 16, 195–202 (2005)

    Article  Google Scholar 

  23. Li, D.J.: Adaptive output feedback control of uncertain nonlinear chaotic systems based on dynamic surface control technique. Nonlinear Dyn. 68, 235–243 (2012)

    Article  MATH  Google Scholar 

  24. Wu, L.G., Daniel, H.: Fuzzy filter design for nonlinear Itô stochastic systems with application to sensor fault detection. IEEE Trans. Fuzzy Syst. 17, 233–242 (2009)

    Article  Google Scholar 

  25. Wu, L.G., Zheng, W.X.: L2–L∞ fuzzy filter design for nonlinear Itô stochastic systems with application to sensor fault detection. IEEE Trans. Syst. Man Cybern., Part B, Cybern. 39, 1308–1315 (2009)

    Article  MathSciNet  Google Scholar 

  26. Wu, L.G., Su, X.J., Shi, P., Qiu, J.B.: A new approach to stability analysis and stabilization of discrete-time T–S fuzzy time-varying delay systems. IEEE Trans. Syst. Man Cybern., Part B, Cybern. 41, 273–286 (2011)

    Article  Google Scholar 

  27. Li, H.Y., Liu, H.H., Gao, H.J., Shi, P.: Reliable fuzzy control for active suspension systems with actuator delay and fault. IEEE Trans. Fuzzy Syst. 20, 342–357 (2012)

    Article  Google Scholar 

  28. Wang, L.X.: Adaptive Fuzzy Systems and Control. Prentice Hall, Englewood Cliffs (1994)

    Google Scholar 

  29. Chen, B., Liu, X.P., Liu, K.F., Shi, P., Lin, C.: Direct adaptive fuzzy control for nonlinear systems with time-varying delays. Inf. Sci. 180, 776–792 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  30. Zhou, Q., Shi, P., Lu, J., Xu, S.: Adaptive output feedback fuzzy tracking control for a class of nonlinear systems. IEEE Trans. Fuzzy Syst. 19, 972–982 (2011)

    Article  Google Scholar 

  31. Wang, T., Tong, S.C., Li, Y.M.: Robust adaptive fuzzy control for nonlinear system with dynamic uncertainties based on backstepping. Int. J. Innov. Comput. Inf. Control 5, 2675–2688 (2009)

    Google Scholar 

  32. Liu, Y.J., Zheng, Y.Q.: Adaptive robust fuzzy control for a class of uncertain chaotic systems. Nonlinear Dyn. 57, 431–439 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  33. Yu, J.P., Chen, B.: Fuzzy-approximation-based adaptive control of the chaotic permanent magnet synchronous motor. Nonlinear Dyn. 69, 1479–1488 (2012)

    Article  Google Scholar 

  34. Jagannnathan, S., Lewis, F.L.: Robust backstepping control of a class of nonlinear systems using fuzzy logic. Inf. Sci. 123, 223–240 (2000)

    Article  Google Scholar 

  35. Chen, B., Liu, X.P.: Adaptive fuzzy output tracking control of MIMO nonlinear uncertain systems. IEEE Trans. Fuzzy Syst. 15, 287–300 (2007)

    Article  Google Scholar 

  36. Chen, B., Liu, X.P., Tong, S.C.: Fuzzy approximate disturbance decoupling of MIMO nonlinear systems by backstepping approach. Fuzzy Sets Syst. 158, 1097–1125 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  37. Slotine, J.J.E., Li, W.: Applied Nonlinear Control. Prentice-Hall, Englewood Cliffs (1991)

    MATH  Google Scholar 

  38. Wang, H.Q., Chen, B., Lin, C.: Direct adaptive neural control for strict-feedback stochastic nonlinear systems. Nonlinear Dyn. 67, 2703–2718 (2012)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Natural Science Foundation of China (Nos. 61203008, 61074014, 51179019), Program for Liaoning Innovative Research Team in University (No. LT2012013), the Natural Science Foundation of Liaoning Province (No. 20102012) and China Postdoctoral Special Science Foundation (No. 200902241).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongming Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Y., Tong, S. & Li, T. Fuzzy adaptive dynamic surface control for a single-link flexible-joint robot. Nonlinear Dyn 70, 2035–2048 (2012). https://doi.org/10.1007/s11071-012-0596-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-012-0596-7

Keywords

Navigation