Skip to main content
Log in

Dynamic analysis of externally excited NES-controlled systems via a mixed Multiple Scale/Harmonic Balance algorithm

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

A general, nonlinear, multi-d.o.f. structure, excited by harmonic external force in 1:1 resonance with one of the modes of the system, is considered. The structure is attached to an essentially nonlinear oscillator, with small mass and damping (Nonlinear Energy Sink, NES). The scope of the NES is to passively control the amplitude of vibrations of the main structure. A mixed Multiple Scale/Harmonic Balance Method (MSHBM) is proposed to get the differential equations describing the slow- and fast-flow dynamics of the whole structure. The main advantage of the procedure is that no complexification-averaging is required, so that the analysis is reconducted in the framework of the classical perturbation techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Vakakis, A.F., Gendelman, O.V., Bergman, L.A., McFarland, D.M., Kerschen, G., Lee, Y.S.: Nonlinear Targeted Energy Transfer in Mechanical and Structural Systems I. Springer, New York (2008a)

    Google Scholar 

  2. Vakakis, A.F., Gendelman, O.V., Bergman, L.A., McFarland, D.M., Kerschen, G., Lee, Y.S.: Nonlinear Targeted Energy Transfer in Mechanical and Structural Systems II. Springer, New York (2008b)

    Google Scholar 

  3. Maniadis, P., Kopidakis, G., Aubry, S.: Classical and quantum targeted energy transfer between nonlinear oscillators. Physica D 188, 153–177 (2004)

    Article  MATH  Google Scholar 

  4. Kerschen, G., Kowtko, J.J., McFarland, D.M., Bergman, L.A., Vakakis, A.F.: Theoretical and experimental study of multimodal targeted energy transfer in a system of coupled oscillators. Nonlinear Dyn. 47, 285–309 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  5. Panagopoulos, P.N., Gendelman, O., Vakakis, A.F.: Robustness of nonlinear targeted energy transfer in coupled oscillators to changes of initial conditions. Nonlinear Dyn. 47, 377–387 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  6. Aubry, S., Kopidakis, G., Morgante, A.M., Tsironis, G.P.: Analytic conditions for targeted energy transfer between nonlinear oscillators or discrete breathers. Physica B 296, 222–236 (2001)

    Article  Google Scholar 

  7. Tsakirtzis, S., Panagopoulos, P.N., Kerschen, G., Gendelman, O., Vakakis, A.F., Bergman, L.A.: Complex dynamics and targeted energy transfer in linear oscillators coupled to multi-degree-of-freedom essentially nonlinear attachments. Nonlinear Dyn. 48, 285–318 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  8. Guckenheimer, J., Hoffman, K., Weckesser, W.: Bifurcations of relaxation oscillations near folded saddles. Int. J. Bifurc. Chaos 15, 3411–3421 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  9. Guckenheimer, J., Wechselberger, M., Young, L.-S.: Chaotic attractors of relaxation oscillators. Nonlinearity 19, 701–720 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  10. Gendelman, O.V., Starosvetsky, Y., Feldman, M.: Attractors of harmonically forced linear oscillator with attached nonlinear energy sink i: description of response regimes. Nonlinear Dyn. 51, 31–46 (2008)

    Article  MATH  Google Scholar 

  11. Starosvetsky, Y., Gendelman, O.V.: Response regimes of linear oscillator coupled to nonlinear energy sink with harmonic forcing and frequency detuning. J. Sound Vib. 315, 746–765 (2008)

    Article  Google Scholar 

  12. Vaurigaud, B., Savadkoohi, A.T., Lamarque, C.-H.: Targeted energy transfer with parallel nonlinear energy sinks. Part I: design theory and numerical results. Nonlinear Dyn. 66(4), 763–780 (2011a)

    Article  MATH  Google Scholar 

  13. Savadkoohi, A.T., Vaurigaud, B., Lamarque, C.-H., Pernot, S.: Targeted energy transfer with parallel nonlinear energy sinks. Part II: theory and experiments. Nonlinear Dyn. 67(1), 37–46 (2012)

    Article  MATH  Google Scholar 

  14. Lamarque, C.-H., Gendelman, O.V., Savadkoohi, A.T., Etcheverria, E.: Targeted energy transfer in mechanical systems by means of non-smooth nonlinear energy sink. Acta Mech. 221, 175–200 (2011)

    Article  MATH  Google Scholar 

  15. Gendelman, O.V., Vakakis, A.F., Bergman, L.A., McFarland, D.M.: Asymptotic analysis of passive nonlinear suppression of aeroelastic instabilities of a rigid wing in subsonic flow. SIAM J. Appl. Math. 70(5), 1655–1677 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  16. Vaurigaud, B., Manevitch, L.I., Lamarque, C.-H.: Passive control of aeroelastic instability in a long span bridge model prone to coupled flutter using targeted energy transfer. J. Sound Vib. 330, 2580–2595 (2011b)

    Article  Google Scholar 

  17. Manevitch, L.: The description of localized normal modes in a chain of nonlinear coupled oscillators using complex variables. Nonlinear Dyn. 25, 95–109 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  18. Gendelman, O.V.: Targeted energy transfer in systems with non-polynomial nonlinearity. J. Sound Vib. 315, 732–745 (2008)

    Article  Google Scholar 

  19. Nayfeh, A.H., Mook, D.T.: Nonlinear Oscillations. Wiley, New York (1979)

    MATH  Google Scholar 

  20. Jiang, X., McFarland, D.M., Bergman, L.A., Vakakis, A.F.: Steady state passive nonlinear energy pumping in coupled oscillators: theoretical and experimental results. Nonlinear Dyn. 33, 87–102 (2003)

    Article  MATH  Google Scholar 

  21. Malatkar, P., Nayfeh, A.H.: Steady-state dynamics of a linear structure weakly coupled to an essentially nonlinear oscillator. Nonlinear Dyn. 47, 167–179 (2007)

    Article  MATH  Google Scholar 

  22. Doedel, E.J., Oldeman, B.E.: AUTO-07P: continuation and bifurcation software for ordinary differential equation (2012). URL http://cmvl.cs.concordia.ca/auto/

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angelo Luongo.

Appendix: Coefficients of the equations

Appendix: Coefficients of the equations

The mode u is assumed normalized to get unitary modal mass (u T Mu=1). The expression of the coefficients of Eq. (19) are:

$$ \everymath{\displaystyle }\begin{array}{@{}l} c_1\!= -\frac{1}{2}\mathbf {u}^T\hspace{-0.6pt}\mathbf {C}\mathbf {u},\qquad c_2=-\frac{1}{\!2\omega\!}\mathbf {u}^T\hspace{-0.6pt}\mathbf {K}_1\mathbf {u},\qquad c_3=-\frac{\xi}{2}r \\ \noalign {\vspace {6pt}} c_4= \frac{3\kappa r}{2\omega},\qquad c_5=\frac{1}{2\omega} \mathbf {u}^T\hspace{-0.6pt}\mathbf {n}(\mathbf {u},\mathbf {u},\bar{\mathbf {u}}),\qquad c_6=\frac{1}{4\omega} \end{array} $$
(47)

In Eq. (20), the column matrices w j (j=1,…,6) are the solutions of the following singular algebraic problems in which, however, compatibility is satisfied:

(48)
(49)
(50)
(51)
(52)
(53)

The solution is made unique by the normalization condition \(\mathbf {w}_{j}^{T}\mathbf {u}=0\).

Moreover, w j (j=7,8) are the solutions of the following non-singular algebraic:

(54)
(55)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Luongo, A., Zulli, D. Dynamic analysis of externally excited NES-controlled systems via a mixed Multiple Scale/Harmonic Balance algorithm. Nonlinear Dyn 70, 2049–2061 (2012). https://doi.org/10.1007/s11071-012-0597-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-012-0597-6

Keywords

Navigation