Skip to main content
Log in

Experimental realizations of the HR neuron model with programmable hardware and synchronization applications

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This study presents experimental realizations of the HR neuron model with programmable hardware and synchronization applications. The HR neuron model exhibiting burst, spike, and chaotic dynamics has been implemented with both FPAA (Field Programmable Analog Array) and FPGA (Field Programmable Gate Array) devices. These devices provide flexible design possibilities such as reducing the complexity of design, real-time modification, software control and adjustment within the system. And it is also examined experimentally that how the synchronization of two HR neurons are able to achieve by using these hardware. The experimental results obtained from FPAA and FPGA based realizations agree with the numerical simulations very well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Notes

  1. Online available: www.anadigm.com.

  2. [Online]. Available: www.altera.com.

References

  1. McCulloch, W.S., Pits, W.H.: A logical calculus of ideas immanent in nervous activity. Bull. Math. Biophys. 5, 115–133 (1943)

    Article  MathSciNet  MATH  Google Scholar 

  2. Hodgkin, A., Huxley, A.: A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. 117, 500–544 (1952)

    Google Scholar 

  3. FitzHugh, R.: Mathematical models for excitation and propagation in nerve. In: Schawn, H.P. (ed.) Biological Engineering, vol. 1, pp. 1–85. McGraw-Hill, New York (1969)

    Google Scholar 

  4. Nagumo, J., Sato, S.: On a response characteristic of mathematical neuron model. Kybernetik 10, 155–164 (1972)

    Article  MATH  Google Scholar 

  5. Wilson, H.R., Cowan, J.D.: Excitatory and inhibitory interactions in localized populations of model neurons. Biophys. J. 12(1), 1–24 (1972)

    Article  Google Scholar 

  6. Morris, C., Lecar, H.: Voltage oscillations in the barnacle giant muscle fiber. Biophysics J. 35, 193–213 (1981)

    Article  Google Scholar 

  7. Hindmarsh, J.L., Rose, R.M.: A model of neural bursting using three couple first order differential equations. Proc. R. Soc. Lond. B, Biol. Sci. 221(1222), 87–102 (1984)

    Article  Google Scholar 

  8. Izhikevich, E.M.: Simple model of spiking neurons. IEEE Transactions on Neural Networks 14(6) (2003)

  9. Mishra, D., Yadav, A., Ray, S., Kalra, P.K.: Controlling synchronization of modified FitzHugh–Nagumo neurons under external electrical stimulation. NeuroQuantology 4(1), 50–67 (2006)

    Google Scholar 

  10. Checco, P., Righero, M., Biey, M., Kocerev, L.: Information processing in networks of coupled Hindmarsh–Rose neurons. In: International Symposium on Nonlinear Theory and its Applications (NOLTA 2006), Bologna-Italy, pp. 671–674 (2006)

    Google Scholar 

  11. Checco, P., Biey, M., Righero, M., Kocerev, L.: Synchronization and bifurcations in networks of coupled Hindmarsh-Rose neurons. In: IEEE International Symposium on Circuits and Systems, ISCAS 2007, pp. 1541–1544 (2007)

    Google Scholar 

  12. Elson, R.C., Selverston, A.I., Huerta, R., Rulkov, N.F., Rabinovich, A.I., Abarbanel, H.D.I.: Synchronous behavior of two coupled biological neurons. Phys. Rev. Lett. 81(25), 5692–5695 (1998)

    Article  Google Scholar 

  13. Li, F., Liu, Q., Guo, H., Zhao, Y., Tang, J., Ma, J.: Simulating the electric activity of FitzHugh–Nagumo neuron by using Josephson junction model. Nonlinear Dyn. 69(4), 2169–2179 (2012)

    Article  Google Scholar 

  14. Shi, X.R.: Bursting synchronization of Hind–Rose system based on a single controller. Nonlinear Dyn. 59, 95–99 (2010)

    Article  MATH  Google Scholar 

  15. Li, B., Li, Y. Rong, X.: Gait generation and transitions of quadruped robot based on Wilson–Cowan weakly neural networks. In: IEEE International Conference on Robotics and Biomimetics (ROBIO), pp. 19–24 (2010)

    Google Scholar 

  16. Lu, J., Kim, Y.B., Ayers, J.: A low power 65 nm CMOS electronic neuron and synapse design for a biomimetic micro-robot. In: IEEE 54th International Midwest Symposium on Circuits and Systems (MWSCAS), pp. 1–4 (2011)

    Chapter  Google Scholar 

  17. Lewis, E.R.: An electronic model of the neuron based on the dynamics of potassium and sodium ion fluxes. In: Reiss, R.F. (ed.) Neural Theory and Modeling, pp. 154–189. Stanford University Press, Stanford (1964)

    Google Scholar 

  18. Roy, G.: A simple electronic analog of the squid axon membrane: the neurofet. IEEE Trans. Biomed. Eng. 19(1), 60–63 (1972)

    Article  Google Scholar 

  19. Merlat, L., Silvestre, N., Merckle, J.: A Hindmarsh and Rose-based electronic burster. In: Proceedings of Fifth International Conference on Microelectronics for Neural Networks, pp. 39–44 (1996)

    Chapter  Google Scholar 

  20. Lee, Y.J., Lee, J., Kim, Y.B., Ayers, J., Volkovskii, A., Selverston, A., Abarbanel, H., Rabinovich, M.: Low power real time electronic neuron VLSI design using subthreshold technique. In: Proceedings of the 2004 International Symposium on Circuits and Systems (ISCAS ’04), vol. 4, pp. IV 744–747 (2004)

    Google Scholar 

  21. Poggi, T., Sciutto, A., Storace, M.: Piecewise linear implementation of nonlinear dynamical systems: from theory to practice. Electron. Lett. 45(19), 966–967 (2009)

    Article  Google Scholar 

  22. Charles, G., Gordon, C., Alexander, W.E.: An implementation of a biological neural model using analog-digital integrated circuits. In: IEEE International Behavioral Modeling and Simulation Workshop (BMAS 2008), pp. 78–83 (2008)

    Chapter  Google Scholar 

  23. Gotthans, T., Petrzela, J., Hrubos, Z.: Analysis of Hindmarsh–Rose neuron model and novel circuitry realization. In: Proceedings of the 18th International Conference Mixed Design of Integrated Circuits and Systems (MIXDES), pp. 576–580 (2011)

    Google Scholar 

  24. Linaro, D., Poggi, T., Storace, M.: Experimental bifurcation diagram of a circuit-implemented neuron model. Phys. Lett. A 374, 4589–4593 (2010)

    Article  Google Scholar 

  25. Steur, E.: On synchronization of electromechanical Hindmarsh–Rose oscillators. Master thesis, Eindhoven University of Technology (2007)

  26. Pinto, R.D., Varona, P., Volkovskii, A.R., Szücs, A., Abarbanel, H.D.I., Rabinovich, M.I.: Synchronous behavior of two coupled electronic neurons. Phys. Rev., E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 62, 2644–2656 (2000) (2000)

    Article  Google Scholar 

  27. Jacquir, S., Binczak, S., Bilbault, J.M., Kazantsev, V., Nekorkin, V.: Synaptic coupling between two electronic neurons. Nonlinear Dyn. 44, 29–36 (2006)

    Article  MATH  Google Scholar 

  28. Zhao, J., Kim, Y.B.: Circuit implementation of Fitz–Hugh–Nagumo neuron model using field programmable analog arrays. In: 50th Midwest Symposium on Circuits and Systems (MWSCAS 2007), pp. 772–775 (2007)

    Chapter  Google Scholar 

  29. Sekerli, M., Butera, R.J.: An implementation of a simple neuron model in field programmable analog arrays. In: 26th Annual International Conference of the IEEE on Engineering in Medicine and Biology Society (IEMBS ’04), pp. 4564–4567 (2004)

    Chapter  Google Scholar 

  30. Rice, K.L., Bhuiyan, M.A., Taha, T.M., Vutsinas, C.N., Smith, M.C.: FPGA implementation of Izhikevich spiking neural networks for character recognition. In: International Conference on Reconfigurable Computing and FPGAs (ReConFig ’09), pp. 451–456 (2009)

    Chapter  Google Scholar 

  31. Weinstein, R.K., Lee, R.H.: Architectures for high-performance FPGA implementations of neural models. J. Neural Eng. 3, 21–34 (2006)

    Article  Google Scholar 

  32. Bizzarri, F., Linaro, D., Storace, M.: PWL approximation of the Hindmarsh–Rose neuron model in view of its circuit implementation. In: 18th European Conference on Circuit Theory and Design (ECCTD 2007), pp. 878–881 (2007)

    Chapter  Google Scholar 

  33. Gonzàlez-Mıranda, J.M.: Complex bifurcation structures in the Hindmarsh–Rose neuron model. Int. J. Bifurc. Chaos Appl. Sci. Eng. 17(9), 3071–3083 (2007)

    Article  MATH  Google Scholar 

  34. Storace, M., Linaro, D., Lange, E.: The Hindmarsh–Rose neuron model: bifurcation analysis and piecewise-linear approximations. Chaos 18(3), 033128 (2008)

    Article  MathSciNet  Google Scholar 

  35. Innocenti, G., Genesio, R.: On the dynamics of chaotic spiking-bursting transition in the Hindmarsh–Rose neuron. Chaos 19(2), 023124 (2009)

    Article  MathSciNet  Google Scholar 

  36. Danca, M.F., Wang, Q.: Synthesizing attractors of Hindmarsh–Rose neuronal systems. Nonlinear Dyn. 62(1–2), 437–446 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  37. Kandel, E.R., Schwartz, J.H., Jessell, T.M.: Principles of Neural Science, 4th ed. McGraw-Hill, New York (2000) ISBN 0-8385-7701-6

    Google Scholar 

  38. Bal, T., Nagy, F., Moulins, M.: The pyloric central pattern generator in Crustacea: a set of conditional neuronal oscillators. J. Comp. Physiol. 163(6), 715–727 (1988)

    Article  Google Scholar 

  39. Miller, J.P., Selverston, A.I.: Mechanisms underlying pattern generation in lobster stomatogastric ganglion as determined by selective inactivation of identified neurons. II. Oscillatory properties of pyloric neurons. J. Neurophysiol. 48(6), 1378–1391 (1982)

    Google Scholar 

  40. Wu, Y., Xu, J., Jin, W.: Synchronous behaviors of two coupled neurons. In: Neural Networks (ISNN 2005), Lecture Notes in Computer Science Advances, vol. 3496, pp. 121–130 (2005)

    Google Scholar 

  41. Shi, Y., Wang, J., Deng, B., Liu, Q.: Chaotic synchronization of coupled Hindmarsh–Rose neurons using adaptive control. In: 2nd International Conference on Biomedical Engineering and Informatics (BMEI ’09), pp. 1–5 (2009)

    Chapter  Google Scholar 

  42. Che, Y., Zhang, S., Wang, J., Cui, S., Han, C., Deng, B., Wei, X.: Synchronization of inhibitory coupled Hindmarsh–Rose neurons via adaptive sliding mode control. In: 2nd International Conference on Intelligent Control and Information Processing (ICICIP), vol. 2, pp. 1134–1139 (2011)

    Chapter  Google Scholar 

  43. Shi, X., Wang, Z.: Adaptive synchronization of time delay Hindmarsh–Rose neuron system via self-feedback. Nonlinear Dyn. 69(4), 2147–2153 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Recai Kiliç.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dahasert, N., Öztürk, İ. & Kiliç, R. Experimental realizations of the HR neuron model with programmable hardware and synchronization applications. Nonlinear Dyn 70, 2343–2358 (2012). https://doi.org/10.1007/s11071-012-0618-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-012-0618-5

Keywords

Navigation