Skip to main content
Log in

Fuzzy PID control of epileptiform spikes in a neural mass model

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper, the problem of controlling epileptiform spikes in a neural mass model is addressed. Considering the complication and nonlinearity of the neural mass model, a fuzzy PID controller is designed so that epileptiform spikes are quenched and the output waveform tracks an expected one. The tracking effect is analyzed by numerical simulation for a regular network of coupled neural populations. The effect of important model parameters on the control energy and the effect of the types of controlled populations on the ability to realize the tracking purpose are analyzed for the same network.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Nunez, P.L.: Electric Fields of the Brain. Oxford University Press, New York (1981)

    Google Scholar 

  2. David, O., Friston, K.J.: A neural mass model for MEG/EEG: coupling and neuronal dynamics. NeuroImage 20, 1743–1755 (2003)

    Article  Google Scholar 

  3. Hodgkin, A.L., Huxley, A.F.: A quantitatived description of membrane current and its application to conduction and excitation in nerve. J. Physiol. 117, 500–544 (1952)

    Google Scholar 

  4. Ding, L., Hou, C.: Stabilizing control of Hopf bifurcation in the Hodgkin–Huxley model via washout filter with linear control term. Nonlinear Dyn. 60, 131–139 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  5. Shirahata, T.: The effect of variations in sodium conductances on pacemaking in a dopaminergic retinal neuron model. Acta Biol. Hung. 62, 211–214 (2011)

    Article  Google Scholar 

  6. Lopes da Silva, F.H., van Rotterdam, A., Barts, P., et al.: Models of neuronal populations: the basic mechanisms of rhythmicity. Prog. Brain Res. 45, 281–308 (1976)

    Article  Google Scholar 

  7. Jansen, B.H., Zouridakis, G., Brandt, M.E.: A neurophysiologically-based mathematical model of flash visual evoked potentials. Biol. Cybern. 68, 275–283 (1993)

    Article  Google Scholar 

  8. Jansen, B.H., Rit, V.G.: Electroencephalogram and visual evoked potential generation in a mathematical model of coupled cortical columns. Biol. Cybern. 73, 357–366 (1995)

    Article  MATH  Google Scholar 

  9. Zavaglia, M., Cona, F., Ursino, M.: A neural mass model to simulate different rhythms in a cortical region. Comput. Intell. Neurosci. 10, 1155–1158 (2010)

    Google Scholar 

  10. Cona, F., Zavaglia, M., Massimini, M., Rosanova, M., Ursino, M.: A neural mass model of interconnected regions simulates rhythm propagation observed via TMS-EEG. NeuroImage 57(3), 1045–1058 (2011)

    Article  Google Scholar 

  11. David, O., Kiebel, S.J., Harrison, L.M., et al.: Dynamic causal modeling of evoked responses in EEG and MEG. NeuroImage 30, 1255–1272 (2006)

    Article  Google Scholar 

  12. David, O., James, M.K., Friston, K.J.: Mechanisms of evoked and induced responses in MEG/EEG. NeuroImage 31, 1580–1591 (2006)

    Article  Google Scholar 

  13. Lytton, W.W.: Computer modelling of epilepsy. Nature 9, 626–637 (2008)

    Google Scholar 

  14. Van Albada, S.J., Robinson, P.A.: Mean-field modeling of the basal ganglia-thalamocortical system. I: Firing rates in healthy and Parkinsonian states. J. Theor. Biol. 257, 642–663 (2009)

    Article  Google Scholar 

  15. Van Albada, S.J., Gray, R.T., Drysdale, P.M., Robinson, P.A.: Mean-field modeling of the basal ganglia-thalamocortical system. II: Dynamics of Parkinsonian oscillations. J. Theor. Biol. 257, 664–688 (2009)

    Article  Google Scholar 

  16. Rubchinsky, L.L., Park, C., Worth, R.M.: Intermittent neural synchronization in Parkinson’s disease. Nonlinear Dyn. 3, 329–346 (2012)

    Article  Google Scholar 

  17. Bhattacharya, B.S., Coyle, D., Maguire, L.P.: A thalamo-cortico-thalamic neural mass model to study alpha rhythms in Alzheimer’s disease. Neural Netw. 24(6), 631–645 (2011)

    Article  Google Scholar 

  18. Wendling, F., Bellanger, J.J., Bartolomei, F., et al.: Relevance of nonlinear lumped-parameter models in the analysis of depth-EEG epileptic signals. Biol. Cybern. 83, 367–378 (2000)

    Article  Google Scholar 

  19. Goodfellow, M., Schindler, K., Baier, G.: Intermittent spike-wave dynamics in a heterogeneous, spatially extended neural mass model. NeuroImage 55, 920–932 (2011)

    Article  Google Scholar 

  20. Goodfellow, M., Schindler, K., Baier, G.: Self-organised transients in a neural mass model of epileptogenic tissue dynamics. NeuroImage 59, 2644–2660 (2012)

    Article  Google Scholar 

  21. Krauss, G.L., Cerebellar, K.MZ.: Thalamic stimulation treatment for epilepsy. Acta Neurochir., Suppl. 97, 347–356 (2007)

    Article  Google Scholar 

  22. Pollo, C., Rationale, V.JG.: Mechanisms of efficacy, anatomical targets and future prospects of electrical deep brain stimulation for epilepsy. Acta Neurochir., Suppl. 97, 311–320 (2007)

    Article  Google Scholar 

  23. Benabid, A.L.: What the future holds for deep brain stimulation. Expert. Rev. Med. Devices 4, 895–903 (2007)

    Article  Google Scholar 

  24. Sunderam, S., Gluckman, B., Reato, D., Bikson, M.: Toward rational design of electrical stimulation strategies for epilepsy control. Epilepsy Behav. 17, 6–22 (2010)

    Article  Google Scholar 

  25. Ivancevic, T., Jain, L., Pattison, J., Hariz, A.: Nonlinear dynamics and chaos methods in neurodynamics and complex data analysis. Nonlinear Dyn. 56, 23–44 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  26. Passino, K.M., Yurkovich, S.: Fuzzy Control. Tsinghua University Press, Bejing (2001)

    Google Scholar 

  27. Kovacic, Z., Bogdan, S.: Fuzzy Controller Design Theory and Applications. China Machine Press, Beijing (2010)

    Google Scholar 

  28. Khosravi, S., Jahangir, M., Afkhami, H.: Adaptive fuzzy SMC-based formation design for swarm of unknown time-delayed robots. Nonlinear Dyn. 4, 1825–1835 (2012)

    Article  Google Scholar 

  29. Ren, C., Tong, S., Li, Y.: Fuzzy adaptive high-gain-based observer backstepping control for SISO nonlinear systems with dynamical uncertainties. Nonlinear Dyn. 2, 941–955 (2012)

    Article  Google Scholar 

  30. Lin, C.C., Liu, W.C., Chan, C.C., Ju, M.S.: Fuzzy control with amplitude/pulse-width modulation of nerve electrical stimulation for muscle force control. J. Neural Eng. 9, 026026 (2012)

    Article  Google Scholar 

  31. Guclu, R., Yazici, H.: Seismic-vibration mitigation of a nonlinear structural system with an ATMD through a fuzzy PID controller. Nonlinear Dyn. 3, 553–564 (2009)

    Article  Google Scholar 

  32. Cetin, S., Akkaya, A.V.: Simulation and hybrid fuzzy-PID control for positioning of a hydraulic system. Nonlinear Dyn. 3, 465–476 (2010)

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by National Natural Science Foundation of China (61004050, 61273260, 61172095) and Specialized Research Fund for the Doctoral Program of Higher Education (20101333110006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xian Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, X., Liu, H., Tang, Y. et al. Fuzzy PID control of epileptiform spikes in a neural mass model. Nonlinear Dyn 71, 13–23 (2013). https://doi.org/10.1007/s11071-012-0638-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-012-0638-1

Keywords

Navigation