Skip to main content
Log in

Projective synchronization of a class of complex network based on high-order sliding mode control

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Projective synchronization of a class of complex networks is investigated using second-order sliding mode control. The sliding surface and the control input are designed based on stability theory. The Burgers system with spatiotemporal chaotic behavior in the physics domain is taken as nodes to constitute the complex network, and the Fisher–Kolmogorov system is taken as the tracking target. The artificial simulation results show that the synchronization technique is effective.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Emelyanov, S.V.: Control of first order delay systems by means of an astatic controller and nonlinear correction. Autom. Remote Control 20, 983–991 (1959)

    Google Scholar 

  2. Utkin, V.: Variable structure systems with sliding modes. IEEE Trans. Autom. Control 22, 212–222 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  3. Yazdanbakhsh, O., Hosseinnia, S., Askari, J.: Synchronization of unified chaotic system by sliding mode/mixed H 2/H control. Nonlinear Dyn. 67, 1903–1912 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  4. Aghababa, M.P.: Finite-time chaos control and synchronization of fractional-order nonautonomous chaotic (hyperchaotic) systems using fractional nonsingular terminal sliding mode technique. Nonlinear Dyn. 69, 247–261 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  5. Delavari, H., Ghader, R., Ranjbar, A., Momani, S.: Fuzzy fractional order sliding mode controller for nonlinear systems. Commun. Nonlinear Sci. Numer. Simul. 15, 963–978 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  6. Nastaran, V., Khellat, F.: Projective synchronization of chaotic time-delayed systems via sliding mode controller. Chaos Solitons Fractals 42, 1054–1061 (2009)

    Article  MATH  Google Scholar 

  7. Milosavljevic, D.: General conditions for the existence of a quasi-sliding mode on the switching hyperplane in discrete variable structure systems. Autom. Remote Control 46, 307–314 (1985)

    MATH  Google Scholar 

  8. Sarpturk, S., Istefanopulos, Y., Kaynak, O.: On the stability of discrete-time sliding mode control systems. IEEE Trans. Autom. Control 32, 930–932 (1987)

    Article  MATH  Google Scholar 

  9. Kawamura, A., Itoh, H., Sakamoto, K.: Chattering reduction of disturbance observer based sliding mode control. IEEE Trans. Ind. Appl. 30, 456–461 (1994)

    Article  Google Scholar 

  10. Chen, D.Y., Zhang, R.F., Sprott, J.C., Ma, X.Y.: Synchronization between integer-order chaotic systems and a class of fractional-order chaotic system based on fuzzy sliding mode control. Nonlinear Dyn. 70, 1549–1561 (2012)

    Article  MathSciNet  Google Scholar 

  11. Tavazoei, M.S., Haeri, M.: Synchronization of chaotic fractional-order systems via active sliding mode controller. Physica A 387, 57–70 (2008)

    Article  MathSciNet  Google Scholar 

  12. Mohamed, Z., Smaoui, N., Salim, H.: Synchronization of the unified chaotic systems using a sliding mode controller. Chaos Solitons Fractals 42, 3197–3209 (2009)

    Article  MATH  Google Scholar 

  13. Roopaei, M., Sahraei, B.R., Lin, T.C.: Adaptive sliding mode control in a novel class of chaotic systems. Commun. Nonlinear Sci. Numer. Simul. 15, 4158–4170 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  14. Kalsi, K., Lian, J., Hui, S., Żak, S.H.: Sliding mode observers for systems with unknown input: a high-gain approach. Automatica 46, 347–353 (2010)

    Article  MATH  Google Scholar 

  15. Kachroo, P., Tomizuka, M.: Chattering reduction and error convergence in the sliding-mode control of a class of nonlinear systems. IEEE Trans. Autom. Control 41, 1063–1068 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  16. Yanada, H., Ohnishi, H.: Frequency-shaped sliding mode control of an electrohydraulic servomotor. J. Syst. Control Dyn. 213, 441–448 (1999)

    Google Scholar 

  17. Wong, L.J., Leung, F.H.F., Tam, P.K.S.: A chattering elimination algorithm for sliding mode control of uncertain non-linear systems. Mechatronics 8, 765–775 (1998)

    Article  Google Scholar 

  18. Edwards, C.: A practical method for the design of sliding mode controllers using linear matrix inequalities. Automatica 40, 1761–1769 (2004)

    Article  MATH  Google Scholar 

  19. Xu, J.X., Lee, T.H., Wang, M., Yu, X.H.: Design of variable structure controllers with continuous switching control. Int. J. Control 65, 409–431 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  20. Boiko, I., Fridman, L., Iriarte, R., Pisano, A., Usai, E.: Parameter tuning of second-order sliding mode controllers for linear plants with dynamic actuators. Automatica 42, 833–839 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  21. Yamasaki, T., Balakrishnan, S.N., Takano, H.: Integrated guidance and autopilot design for a chasing UAV via high-order sliding modes. J. Franklin Inst. 349, 531–558 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  22. Zhu, Q.Y., Ma, Y.W.: A high order accurate upwind compact scheme for solving Navier–Stokes equations. Comput. Mech. 17, 379–384 (2000)

    MathSciNet  MATH  Google Scholar 

  23. Manne, K.K., Hurd, A.J., Kenkre, V.M.: Nonlinear waves in reaction-diffusion systems: the effect of transport memory. Phys. Rev. E 61, 4177–4184 (2000)

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the Natural Science Foundation of Liaoning Province, China (Grant No. 20082147) and the Innovative Team Program of Liaoning Educational Committee, China (Grant No. 2008T108).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuo Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lü, L., Yu, M., Li, C. et al. Projective synchronization of a class of complex network based on high-order sliding mode control. Nonlinear Dyn 73, 411–416 (2013). https://doi.org/10.1007/s11071-013-0796-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-013-0796-9

Keywords

Navigation