Skip to main content
Log in

Hyperchaos control of the hyperchaotic Chen system by optimal control design

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The aim of this paper is to study the chaos, optimal control, and adaptive control of the hyperchaotic Chen system. In this paper, applying the Pontryagin’s minimum principle (PMP), the optimal control inputs for the interested model are obtained with respect to the selected measure. A piecewise-spectral homotopy analysis method (PSHAM) is used for solving the hyperchaotic Chen system and the extreme conditions obtained from the PMP. Furthermore, an adaptive control approach and a parameter estimation update law are introduced for the hyperchaotic Chen system with completely unknown parameters. The control results are established using the Krasovskii–LaSalle principle. Finally, numerical simulations are included to demonstrate the effectiveness of the proposed control strategy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Lakshmanan, M., Murali, K.: Nonlinear Oscillators: Controlling and Synchronization. World Scientific, Singapore (1996)

    MATH  Google Scholar 

  2. Han, S.K., Kerrer, C., Kuramoto, Y.: Dephasing and bursting in coupled neural oscillators. Phys. Rev. Lett. 75, 3190–3193 (1995)

    Article  Google Scholar 

  3. Blasius, B., Huppert, A., Stone, L.: Complex dynamics and phase synchronization in spatially extended ecological system. Nature 399, 354–359 (1999)

    Article  Google Scholar 

  4. Cuomo, K.M., Oppenheim, A.V.: Circuit implementation of synchronized chaos with applications to communications. Phys. Rev. Lett. 71, 65–68 (1993)

    Article  Google Scholar 

  5. Rossler, O.E.: An equation for hyperchaos. Phys. Lett. A 71, 155–157 (1979)

    Article  MathSciNet  Google Scholar 

  6. Jia, Q.: Hyperchaos generated from the Lorenz chaotic system and its control. Phys. Lett. A 366, 217–222 (2007)

    Article  MATH  Google Scholar 

  7. Kapitaniak, T., Chua, L.O.: Hyperchaotic attractor of unidirectionally coupled Chua’s circuit. Int. J. Bifurc. Chaos Appl. Sci. Eng. 4, 477–482 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  8. Chen, A., Lu, J., Lu, J., Yu, S.: Generating hyperchaotic Lu attractor via state feedback control. Physica A 364, 103–110 (2006)

    Article  Google Scholar 

  9. Lu, J., Chen, G.: A new chaotic attractor coined. Int. J. Bifurc. Chaos Appl. Sci. Eng. 12, 659–661 (2002)

    Article  Google Scholar 

  10. Dadras, S., Momeni, H.R., Qi, G.: Analysis of a new 3D smooth autonomous system with different wing chaotic attractors and transient chaos. Nonlinear Dyn. 62, 391–405 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  11. Dadras, S., Momeni, H.R., Qi, G., Wang, Z.l.: Four-wing hyperchaotic attractor generated from a new 4D system with one equilibrium and its fractional-order form. Nonlinear Dyn. 67, 1161–1173 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  12. Huber, A.W.: Adaptive control of chaotic system. Helv. Chim. Acta 62, 343–349 (1989)

    Google Scholar 

  13. Aghababa, M.P., Khanmohammadi, S., Alizadeh, G.: Finite-time synchronization of two different chaotic systems with unknown parameters via sliding mode technique. Appl. Math. Model. 35, 3080–3091 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  14. Chen, G.R., Yu, X.H.: On time-delayed feedback control of chaotic systems. IEEE Trans. Circuits Syst. I, Fundam. Theory Appl. 46, 767–772 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  15. Li, N., Yuan, H., Sun, H., Zhang, Q.: An impulsive multi-delayed feedback control method for stabilizing discrete chaotic systems. Nonlinear Dyn. (2012). doi:10.1007/s11071-012-0434-y

    Google Scholar 

  16. Sun, K., Liu, X., Zhu, C., Sprott, J.C.: Hyperchaos and hyperchaos control of the sinusoidally forced simplified Lorenz system. Nonlinear Dyn. 69, 1383–1391 (2012)

    Article  MathSciNet  Google Scholar 

  17. Yu, W.G.: Stabilization of three-dimensional chaotic systems via single state feedback controller. Phys. Lett. A 374, 1488–1492 (2010)

    Article  Google Scholar 

  18. Zhao, Y., Zhang, T.Y., Miao, L.H., Deng, W.: Adaptive control for a class of chaotic systems with unknown parameters. In: Control and Decision Conference, pp. 26–28 (2010)

    Google Scholar 

  19. Zhang, X., Zhu, H., Yao, H.: Analysis of a new three-dimensional chaotic system. Nonlinear Dyn. 67, 335–343 (2012)

    Article  MATH  Google Scholar 

  20. Zhang, J., Tang, W.: Control and synchronization for a class of new chaotic systems via linear feedback. Nonlinear Dyn. 58, 675–686 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  21. Sarkar, R., Banerjee, S.: Cancer and self remission and tumor stability, a stochastic approach. Math. Biosci. 169, 65–81 (2005)

    Article  MathSciNet  Google Scholar 

  22. El-Gohary, A.: Chaos and optimal control of cancer self-remission and tumor system steady states. Chaos Solitons Fractals 37, 1305–1316 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  23. El-Gohary, A., Alwasel, I.A.: The chaos and optimal control of cancer model with complete unknown parameters. Chaos Solitons Fractals 42, 2865–2874 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  24. Liao, S.J.: The proposed homotopy analysis technique for the solution of nonlinear problems. Ph.D. thesis, Shanghai Jiao Tong University (1992)

  25. Abbasbandy, S., Zakaria, F.S.: Soliton solutions for the fifth-order KdV equation with the homotopy analysis method. Nonlinear Dyn. 51, 83–87 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  26. Abbasbandy, S.: Solitary wave solutions to the Kuramoto–Sivashinsky equation by means of the homotopy analysis method. Nonlinear Dyn. 52, 35–40 (2008)

    Article  MathSciNet  Google Scholar 

  27. Hayat, T., Javed, T., Sajid, M.: Analytic solution for rotating flow and heat transfer analysis of a third-grade fluid. Acta Mech. 191, 219–229 (2007)

    Article  MATH  Google Scholar 

  28. Herisanu, N., Marinca, V.: Explicit analytical approximation to large-amplitude nonlinear oscillations of a uniform cantilever beam carrying an intermediate lumped mass and rotary inertia. Meccanica 45, 847–855 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  29. Herisanu, N., Marinca, V.: Optimal homotopy perturbation method for a non-conservative dynamical system of a rotating electrical machine. Z. Naturforsch. 67, 509–516 (2012)

    Google Scholar 

  30. Motsa, S.S., Sibanda, P., Shateyi, S.: A new spectral-homotopy analysis method for solving a nonlinear second order BVP. Commun. Nonlinear Sci. Numer. Simul. 15, 2293–2302 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  31. Motsa, S.S., Sibanda, P., Awad, F.G., Shateyi, S.: A new spectral-homotopy analysis method for the MHD Jeffery–Hamel problem. Comput. Fluids 39, 1219–1225 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  32. Liao, S.J.: Beyond Perturbation: Introduction to Homotopy Analysis Method. Chapman & Hall/CRC Press, London/Boca Raton (2003)

    Book  Google Scholar 

  33. Li, Y., Tang, S.W., Chen, G.: Generating hyperchaos via state feedback control. Int. J. Bifurc. Chaos Appl. Sci. Eng. 5, 3367–3375 (2005)

    Article  Google Scholar 

  34. Zhenya, Y.: Controlling hyperchaos in the new hyperchaotic Chen system. Appl. Math. Comput. 68, 1239–1250 (2005)

    Google Scholar 

  35. Khalil, H.K.: Nonlinear Systems, 3rd. edn. Prentice Hall, New York (2002)

    MATH  Google Scholar 

  36. Canuto, C., Hussaini, M.Y., Quarteroni, A., Zang, T.A.: Spectral Methods in Fluid Dynamics. Springer, Berlin (1988)

    Book  MATH  Google Scholar 

  37. Trefethen, L.N.: Spectral Methods in MATLAB. SIAM, Philadelphia (2000)

    Book  MATH  Google Scholar 

Download references

Acknowledgement

This research was supported by a grant from Ferdowsi University of Mashhad (No. MA91288SEF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Saberi Nik.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Effati, S., Saberi Nik, H. & Jajarmi, A. Hyperchaos control of the hyperchaotic Chen system by optimal control design. Nonlinear Dyn 73, 499–508 (2013). https://doi.org/10.1007/s11071-013-0804-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-013-0804-0

Keywords

Navigation