Skip to main content
Log in

Application of piezoelectric actuation to regularize the chaotic response of an electrostatically actuated micro-beam

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The impetus of this study is to investigate the nonlinear chaotic dynamics of a clamped–clamped micro-beam exposed to simultaneous electrostatic and piezoelectric actuation. The micro-beam is sandwiched with piezoelectric layers throughout its length. The combined DC and AC electrostatic actuation is imposed on the micro-beam through two upper and lower electrodes. The piezoelectric layers are actuated via a DC electric voltage applied in the direction of the height of the piezoelectric layers, which produces an axial force proportional to the applied DC voltage. The governing differential equation of the motion is derived using Hamiltonian principle and discretized to a nonlinear Duffing type ODE using Galerkin method. The governing ODE is numerically integrated to get the response of the system in terms of the governing parameters. The results show that the response of the system is greatly affected by the amounts of DC and AC electrostatic voltages applied to the upper and lower electrodes. The results show that the response of the system can be highly nonlinear and in some regions chaotic. Evaluating the K–S entropy of the system, based on several initial conditions given to the system, the chaotic response is distinguished from the periodic or quasiperiodic ones. The main objective is to passively control the chaotic response by applying an appropriate DC voltage to the piezoelectric layers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Wang, Y.C., Adams, S.G., Thorp, J.S., MacDonald, N.C., Hartwell, P., Bertsch, F.: Chaos in MEMS, parameter estimation and its potential application. IEEE Trans. Circuits Syst. I, Fundam. Theory Appl. 45(10), 1013–1020 (1998)

    Article  MATH  Google Scholar 

  2. Luo, A.C.J., Wang, F.Y.: Chaotic motion in a micro-electro-mechanical system with non-linearity from capacitors. Commun. Nonlinear Sci. Numer. Simul. 7(1–2), 31–49 (2002)

    Article  MATH  Google Scholar 

  3. Zhang, W., Meng, G.: Nonlinear dynamical system of micro-cantilever under combined parametric and forcing excitations in MEMS. Sens. Actuators A, Phys. 119(2), 291–299 (2005)

    Article  MathSciNet  Google Scholar 

  4. De, S.K., Aluru, N.R.: Complex nonlinear oscillations in electrostatically actuated microstructures. J. Microelectromech. Syst. 15(2), 355–369 (2006)

    Article  Google Scholar 

  5. DeMartini, B.E., Rhoads, J.F., Turner, K.L., Shaw, S.W., Moehlis, J.: Linear and nonlinear tuning of parametrically excitedMEMS oscillators. J. Microelectromech. Syst. 16(2), 310–318 (2007)

    Article  Google Scholar 

  6. Azizi, S., Rezazadeh, Gh., Ghazavi, M.R., Esmaeilzadeh Khadem, S.: Stabilizing the pull-in instability of an electro-statically actuated micro-beam using piezoelectric actuation. Appl. Math. Model. 35(10), 4796–4815 (2011)

    Article  MATH  Google Scholar 

  7. Younis, M.I., Nayfeh, A.H.: A study of the nonlinear response of a resonant microbeam to an electric actuation. Nonlinear Dyn. 31(1), 91–117 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  8. Nayfeh, A.H., Younis, M.I., Abdel-Rahman, E.M.: Reduced-order models for MEMS applications. Nonlinear Dyn. 41, 26 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  9. Lin, W.H., Zhao, Y.P.: Dynamic behaviour of nanoscale electrostatic actuators. Chin. Phys. Lett. 20(11), 2070–2073 (2003)

    Article  Google Scholar 

  10. Lin, W.H., Zhao, Y.P.: Nonlinear behaviour of nanoscale electrostatic actuators with Casimir force. Chaos Solitons Fractals 23, 1777–1785 (2005)

    MATH  Google Scholar 

  11. Liu, S., Davidson, A., Lin, Q.: Simulation studies on nonlinear dynamics and chaos in a MEMS cantilever control system. J. Micromech. Microeng. 14, 1064–1073 (2004)

    Article  Google Scholar 

  12. Rhoads, J.F., Shaw, S.W., Turner, K.L., Moehlis, J., DeMartini, B.E., Zhang, W.: Generalized parametric resonance in electrostatically actuated microelectromechanical oscillators. J. Sound Vib. 296(4–5), 797–829 (2006)

    Article  Google Scholar 

  13. DeMartini, B.E., Butterfield, H.E., Moehlis, J., Turner, K.L.: Chaos for a microelectromechanical oscillator governed by the nonlinear Mathieu equation. J. Microelectromech. Syst. 16(6), 1314–1323 (2007)

    Article  Google Scholar 

  14. Cveticanin, L., Zukovic, M.: Melnikov’s criteria and chaos in systems with fractional order deflection. J. Sound Vib. 326(3–5), 768–779 (2009)

    Article  Google Scholar 

  15. Haghighi, H.S., Markazi, A.H.D.: Chaos prediction and control in MEMS resonators. Commun. Nonlinear Sci. Numer. Simul. 15(10), 3091 (2010)

    Article  Google Scholar 

  16. Shabani, R., Tarverdilo, S., Rezazadeh, Gh., Agdam, A.P.: Nonlinear vibrations and chaos in electrostatic torsional actuators. Nonlinear Anal., Real World Appl. 12(6), 3572–3584 (2011)

    Article  MATH  Google Scholar 

  17. Chavarette, F.R., Balthazar, J.M., Felix, J.L.P., Rafikov, M.: A reducing of a chaotic movement to a periodic orbit, of a micro-electro-mechanical system, by using an optimal linear control design. Commun. Nonlinear Sci. Numer. Simul. 14(5), 1844–1853 (2009)

    Article  Google Scholar 

  18. Polo, M.F.P., Molina, M.P., Chica, J.G.: Chaotic dynamic and control for micro-electro-mechanical systems of massive storage with harmonic base excitation. Chaos Solitons Fractals 39(3), 1356–1370 (2009)

    Article  MATH  Google Scholar 

  19. Nayfeh, A., Younis, M., Abdel-Rahman, E.: Dynamic pull-in phenomenon in MEMS resonators. Nonlinear Dyn. 48(1), 153–163 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  20. Azizi, S., Ghazavi, M.R., Esmaeilzadeh Khadem, S., Yang, J., Rezazadeh, Gh.: Stability analysis of a parametrically excited functionally graded piezoelectric. Curr. Appl. Phys. 12(2), 456–466 (2012)

    Article  Google Scholar 

  21. Rezazadeh, G., Tahmasebi, A., Zubstov, M.: Application of piezoelectric layers in electrostatic MEM actuators: controlling of pull-in voltage. Microsyst. Technol. 12(12), 1163–1170 (2006)

    Article  Google Scholar 

  22. Rezazadeh, G., Fathalilou, M., Shabani, R.: Static and dynamic stabilities of a microbeam actuated by a piezoelectric voltage. Microsyst. Technol. 15(12), 1785–1791 (2009)

    Article  Google Scholar 

  23. Zamanian, M., Khadem, S.E., Mahmoodi, S.N.: The effect of a piezoelectric layer on the mechanical behavior of an electrostatic actuated microbeam. Smart Mater. Struct. 17, 15 (2008)

    Article  Google Scholar 

  24. Azizi, S., Rezazadeh, Gh., Ghazavi, M.R., Esmaeilzadeh Khadem, S.: Parametric excitation of a piezoelectrically actuated system near Hopf bifurcation. Appl. Math. Model. 36(4), 1529–1549 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  25. Zhang, W., Baskaran, R., Turner, K.L.: Effect of cubic nonlinearity on auto-parametrically amplified resonant MEMS mass sensor. Sens. Actuators A, Phys. 102(1–2), 139–150 (2002)

    Article  Google Scholar 

  26. Mayoof, F.N., Hawwa, M.A.: Chaotic behavior of a curved carbon nanotube under harmonic excitation. Chaos Solitons Fractals 42(3), 1860–1867 (2009)

    Article  Google Scholar 

  27. Jimenez-Triana, A., Zhu, G., Saydy, L.: Chaos synchronization of an electrostatic MEMS resonator in the presence of parametric uncertainties. In: American Control Conference, San Francisco, p. 6 (2011)

    Google Scholar 

  28. Argyris, J., Faust, G., Haase, M.: In: Appa, K. (ed.) An Exploration of Chaos, p. 756 (1994)

    Google Scholar 

  29. Grassberger, P., Procaccia, I.: Estimation of the Kolmogorov entropy from a chaotic signal. Phys. Rev. A 28(4), 2591–2593 (1983)

    Article  Google Scholar 

  30. Younis, M.I., Alsaleem, F.M., Jordy, D.: The response of clamped–clamped microbeams under mechanical shock. Int. J. Non-Linear Mech. 42, 15 (2007)

    Article  Google Scholar 

  31. Saeedi Vahdat, A., Rezazadeh, G.: Effects of axial and residual stresses on thermoelastic damping in capacitive micro-beam resonators. J. Franklin Inst. 348, 18 (2011)

    Google Scholar 

  32. Hilborn, R.C.: Chaos and Nonlinear Dynamics, p. 650. Oxford University Press, London (2001)

    Google Scholar 

  33. Mobki, H., Rezazadeh, Gh., Sadeghi, M., Vakili Tahami, F., Seyyed Fakhrabadi, M.S.: A comprehensive study of stability in an electro-statically actuated micro-beam. Int. J. Non-Linear Mech. 48(0), 78–85 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad-Reza Ghazavi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Azizi, S., Ghazavi, MR., Esmaeilzadeh Khadem, S. et al. Application of piezoelectric actuation to regularize the chaotic response of an electrostatically actuated micro-beam. Nonlinear Dyn 73, 853–867 (2013). https://doi.org/10.1007/s11071-013-0837-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-013-0837-4

Keywords

Navigation