Skip to main content
Log in

Application of Takagi–Sugeno fuzzy model to a class of chaotic synchronization and anti-synchronization

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this study, we investigate a class of chaotic synchronization and anti-synchronization with stochastic parameters. A controller is composed of a compensation controller and a fuzzy controller which is designed based on fractional stability theory. Three typical examples, including the synchronization between an integer-order Chen system and a fractional-order Lü system, the anti-synchronization of different 4D fractional-order hyperchaotic systems with non-identical orders, and the synchronization between a 3D integer-order chaotic system and a 4D fractional-order hyperchaos system, are presented to illustrate the effectiveness of the controller. The numerical simulation results and theoretical analysis both demonstrate the effectiveness of the proposed approach. Overall, this study presents new insights concerning the concepts of synchronization and anti-synchronization, synchronization and control, the relationship of fractional and integer order nonlinear systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Pecora, L., Carroll, T.: Synchronization in chaotic systems. Phys. Rev. Lett. 64(8), 821–824 (1990)

    Article  MathSciNet  Google Scholar 

  2. Xie, Q.X., Chen, G.R., Bollt, E.M.: Hybrid chaos synchronization and its application in information processing. Math. Comput. Model. 35, 145–163 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  3. Zhang, T.Q., Meng, X.Z., Song, Y.: The dynamics of a high-dimensional delayed pest management model with impulsive pesticide input and harvesting prey at different fixed moments. Nonlinear Dyn. 64, 1–12 (2011)

    Article  MathSciNet  Google Scholar 

  4. Liu, L.C., Tian, B., Xue, Y.S., Wang, M., Liu, W.J.: Analytic solution for a nonlinear chemistry system of ordinary differential equations. Nonlinear Dyn. 68, 17–21 (2012)

    Article  MathSciNet  Google Scholar 

  5. Zhang, H.W., Lewis, F.L.: Adaptive cooperative tracking control of higher-order nonlinear systems with unknown dynamics. Automatica 48(7), 1432–1439 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  6. Zou, W., Zhan, M.: Complete synchronization in coupled limit-cycle systems. Europhys. Lett. 81, 10006 (2008)

    Article  MathSciNet  Google Scholar 

  7. Yang, C.C., Lin, C.L.: Robust adaptive sliding mode control for synchronization of space-clamped FitzHugh–Nagumo neurons. Nonlinear Dyn. 69, 2089–2096 (2012)

    Article  MathSciNet  Google Scholar 

  8. Liu, W., Wang, Z.M., Zhang, W.D.: Controlled synchronization of discrete-time chaotic systems under communication constraints. Nonlinear Dyn. 69, 223–230 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  9. Mengue, A.D., Essimbi, B.Z.: Secure communication using chaotic synchronization in mutually coupled semiconductor lasers. Nonlinear Dyn. 70, 1241–1253 (2012)

    Article  MathSciNet  Google Scholar 

  10. Zhang, R.X., Yang, S.P.: Robust synchronization of two different fractional-order chaotic systems with unknown parameters using adaptive sliding mode approach. Nonlinear Dyn. 71, 269–278 (2013)

    Article  Google Scholar 

  11. Chen, Y.S., Chang, C.C.: Adaptive impulsive synchronization of nonlinear chaotic systems. Nonlinear Dyn. 70, 1795–1803 (2012)

    Article  MathSciNet  Google Scholar 

  12. Wang, R., Liu, Y.J., Tong, S.C.: Decentralized control of uncertain nonlinear stochastic systems based on DSC. Nonlinear Dyn. 64, 305–314 (2011)

    Article  MathSciNet  Google Scholar 

  13. Wang, R., Liu, Y.J., Tong, S.C., Chen, C.L.P.: Output feedback stabilization based on dynamic surface control for a class of uncertain stochastic nonlinear systems. Nonlinear Dyn. 67, 683–694 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  14. Lu, L., Yu, M., Luan, L.: Synchronization between uncertain chaotic systems with a diverse structure based on a second-order sliding mode control. Nonlinear Dyn. 70, 1861–1865 (2012)

    Article  MathSciNet  Google Scholar 

  15. Chen, D.Y., Zhang, R.F., Sprott, J.C., Ma, X.Y.: Synchronization between integer-order chaotic system and a class of fractional-order chaotic system based on fuzzy sliding mode control. Nonlinear Dyn. 70, 1549–1561 (2012)

    Article  MathSciNet  Google Scholar 

  16. Morgul, O.: Further stability results for a generalization of delayed feedback control. Nonlinear Dyn. 70, 1255–1262 (2012)

    Article  MathSciNet  Google Scholar 

  17. Sun, Y.H., Wei, Z.N., Sun, G.Q., Ju, P., Wei, Y.F.: Stochastic synchronization of nonlinear energy resource system via partial feedback control. Nonlinear Dyn. 70, 2269–2278 (2012)

    Article  MathSciNet  Google Scholar 

  18. Chen, D.Y., Wu, C., Liu, C.F., Ma, X.Y., You, Y.J., Zhang, R.F.: Synchronization and circuit simulation of a new double-wing chaos. Nonlinear Dyn. 67, 1481–1504 (2012)

    Article  MATH  Google Scholar 

  19. Banerjee, T., Biswas, D., Sarkar, B.C.: Complete and generalized synchronization of chaos and hyperchaos in a coupled first-order time-delayed system. Nonlinear Dyn. 71, 279–290 (2013)

    Article  MathSciNet  Google Scholar 

  20. Cai, G.L., Hu, P., Li, Y.X.: Modified function lag projective synchronization of a financial hyperchaotic system. Nonlinear Dyn. 69, 1457–1464 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  21. Chen, D.Y., Zhang, R.F., Ma, X.Y., Liu, S.: Chaotic synchronization and anti-synchronization for a novel class of multiple chaotic systems via sliding mode control scheme. Nonlinear Dyn. 69, 35–55 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  22. Zeng, C.B., Yang, Q.G., Wang, J.W.: Chaos and mixed synchronization of a new fractional-order system with one saddle and two stable node-foci. Nonlinear Dyn. 65, 457–466 (2011)

    Article  MathSciNet  Google Scholar 

  23. Li, X.F., Leung, A.C.S., Han, X.P., Liu, X.J., Chu, Y.D.: Complete (anti-)synchronization of chaotic systems with fully uncertain parameters by adaptive control. Nonlinear Dyn. 63, 263–275 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  24. Bessa, W.M., de Paula, A.S., Savi, M.A.: Sliding mode control with adaptive fuzzy dead-zone compensation for uncertain chaotic system. Nonlinear Dyn. 70, 1989–2001 (2012)

    Article  Google Scholar 

  25. Jeong, S.C., Ji, D.H., Park, J.H., Won, S.C.: Adaptive synchronization for uncertain complex dynamical network using fuzzy disturbance observer. Nonlinear Dyn. 7(1), 223–234 (2013)

    Article  MathSciNet  Google Scholar 

  26. Mehran, K., Zahawi, B., Giaouris, D.: Investigation of the near-grazing behavior in hard-impact oscillators using model-based TS fuzzy approach. Nonlinear Dyn. 69, 1293–1309 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  27. Jee, S.C., Lee, H.J., Joo, Y.H.: H-/H-infinity sensor fault detection observer design for nonlinear systems in Takagi–Sugeno’s form. Nonlinear Dyn. 67, 2343–2351 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  28. Lam, H.K., Ling, B.W.K., Iu, H.H.C., Ling, S.H.: Synchronization of chaotic systems using time-delayed fuzzy state-feedback controller. IEEE Trans. Circuits Syst. I 55(3), 893–903 (2008)

    Article  MathSciNet  Google Scholar 

  29. Roopaei, M., Jahromi, M.Z., Ranjbar-Sahraei, B., Lin, T.C.: Synchronization of two different chaotic systems using novel adaptive interval type-2 fuzzy sliding mode control. Nonlinear Dyn. 66, 667–680 (2011)

    Article  MATH  Google Scholar 

  30. Wei, Z.C.: Synchronization of coupled nonidentical fractional-order hyperchaotic systems. Discrete Dyn. Nat. Soc. (2011). doi:10.1155/2011/430724

    Google Scholar 

  31. Mahmoud, E.E.: Adaptive anti-lag synchronization of two identical or non-identical hyperchaotic complex nonlinear systems with uncertain parameters. J. Franklin Inst. 349, 1247–1266 (2012)

    Article  MathSciNet  Google Scholar 

  32. Matignon, D.: Stability results for fractional differential equations with applications to control processing. Comput. Eng. Syst. Appl. 2, 963–968 (1996)

    Google Scholar 

  33. Diethelm, K.: An efficient parallel algorithm for the numerical solution of fractional differential equations. Fract. Calc. Appl. Anal. 14, 475–490 (2011)

    MathSciNet  Google Scholar 

  34. Ueta, T., Chen, G.R.: Bifurcation analysis of Chen’s equation. Int. J. Bifurc. Chaos 10, 1917–1931 (2000)

    MathSciNet  MATH  Google Scholar 

  35. Lu, J.G.: Chaotic dynamics of the fractional-order Lu system and its synchronization. Phys. Lett. A 354, 305–311 (2006)

    Article  Google Scholar 

  36. Wu, X.G., Lu, H.T., Shen, S.L.: Synchronization of a new fractional-order hyperchaotic system. Phys. Lett. A 373, 2329–2337 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  37. Wang, S., Yu, Y.G., Diao, M.: Hybrid projective synchronization of chaotic fractional order systems with different dimensions. Physica A 389, 4981–4988 (2010)

    Article  Google Scholar 

Download references

Acknowledgements

This wok was supported by the scientific research foundation of National Natural Science Foundation (51109180), the National Science & Technology Supporting Plan from the Ministry of Science & Technology of China (2011BAD29B08) and the “111” Project from the Ministry of Education of P. R. of China and the State Administration of Foreign Experts Affairs of P.R. of China (B12007).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoyi Ma.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, D., Zhao, W., Sprott, J.C. et al. Application of Takagi–Sugeno fuzzy model to a class of chaotic synchronization and anti-synchronization. Nonlinear Dyn 73, 1495–1505 (2013). https://doi.org/10.1007/s11071-013-0880-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-013-0880-1

Keywords

Navigation