Skip to main content
Log in

Chaotic maps-based three-party password-authenticated key agreement scheme

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Since chaos theory related to cryptography has been addressed widely, many chaotic maps based two-party password-authenticated key agreement (2PAKA) schemes have been proposed. However, to the best of our knowledge, no chaotic maps based three-party password-authenticated key agreement (3PAKA) protocol without using a timestamp has been proposed, yet. In this paper, we propose the first chaotic maps-based 3PAKA protocol without a timestamp. The proposed protocol is not based on the traditional public key cryptosystem but is based on chaotic maps, which not only achieves perfect forward secrecy without using a timestamp, modular exponentiation and scalar multiplication on an elliptic curve, but is also robust to resist various attacks such as password guessing attacks, impersonation attacks, man-in-the-middle attacks, etc.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Baptista, M.S.: Cryptography with chaos. Phys. Lett. A 240, 50–54 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  2. Özkaynak, F., Yavuz, S.: Designing chaotic S-boxes based on time-delay chaotic system. Nonlinear Dyn. (2013). doi:10.1007/s11071-013-0987-4

    Google Scholar 

  3. Behnia, S., Akhshani, A., Ahadpour, S., Mahmodi, H., Akhavan, A.: A fast chaotic encryption scheme based on piecewise nonlinear chaotic maps. Phys. Lett. A 366, 391–396 (2007)

    Article  Google Scholar 

  4. Hussain, I., Shah, T., Gondal, M.: A novel approach for designing substitution-boxes based on nonlinear chaotic algorithm. Nonlinear Dyn. 70, 1791–1794 (2012)

    Article  MathSciNet  Google Scholar 

  5. Hussain, I., Shah, T., Gondal, M., Mahmood, H.: An efficient approach for the construction of LFT S-boxes using chaotic logistic map. Nonlinear Dyn. 71, 133–140 (2013)

    Article  MathSciNet  Google Scholar 

  6. Khan, M., Shah, T., Mahmood, H., Gondal, M.: An efficient method for the construction of block cipher with multi-chaotic systems. Nonlinear Dyn. 71, 489–492 (2013)

    Article  MathSciNet  Google Scholar 

  7. Xiao, D., Liao, X., Wong, K.: An efficient entire chaos-based scheme for deniable authentication. Chaos Solitons Fractals 23, 1327–1331 (2005)

    MATH  Google Scholar 

  8. Alvarez, G.: Security problems with a chaos-based deniable authentication scheme. Chaos Solitons Fractals 26, 7–11 (2005)

    Article  MATH  Google Scholar 

  9. Xiao, D., Liao, X., Deng, S.: A novel key agreement protocol based on chaotic maps. Inf. Sci. 177, 1136–1142 (2007)

    Article  MathSciNet  Google Scholar 

  10. Han, S.: Security of a key agreement protocol based on chaotic maps. Chaos Solitons Fractals 38, 764–768 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  11. Xiang, T., Wong, K., Liao, X.: On the security of a novel key agreement protocol based on chaotic maps. Chaos Solitons Fractals 40, 672–675 (2009)

    Article  MATH  Google Scholar 

  12. Xiao, D., Liao, X., Deng, S.: Using time-stamp to improve the security of a chaotic maps-based key agreement protocol. Inf. Sci. 178, 1598–11602 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  13. Han, S., Chang, E.: Chaotic map based key agreement with/out clock synchronization. Chaos Solitons Fractals 39, 1283–1289 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  14. Guo, X., Zhang, J.: Secure group key agreement protocol based on chaotic Hash. Inf. Sci. 180, 4069–4074 (2010)

    Article  MATH  Google Scholar 

  15. He, D.: Cryptanalysis of a key agreement protocol based on chaotic Hash. eprint.iacr.org/2011/333.pdf

  16. Gong, P., Li, P., Shi, W.: A secure chaotic maps-based key agreement protocol without using smart cards. Nonlinear Dyn. 70, 2401–2406 (2012)

    Article  MathSciNet  Google Scholar 

  17. Tseng, H., Jan, R., Yang, W.: A chaotic maps-based key agreement protocol that preserves user anonymity. In: IEEE International Conference on Communications (ICC09), pp. 1–6 (2009)

    Chapter  Google Scholar 

  18. Niu, Y., Wang, X.: An anonymous key agreement protocol based on chaotic maps. Commun. Nonlinear Sci. Numer. Simul. 16(4), 1986–1992 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  19. Xue, K., Hong, P.: Security improvement on an anonymous key agreement protocol based on chaotic maps. Commun. Nonlinear Sci. Numer. Simul. 17, 2969–2977 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  20. Yoon, E.: Efficiency and security problems of anonymous key agreement protocol based on chaotic maps. Commun. Nonlinear Sci. Numer. Simul. 17, 2735–2740 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  21. Tan, Z.: A chaotic maps-based authenticated key agreement protocol with strong anonymity. Nonlinear Dyn. 72, 311–320 (2013)

    Article  MATH  Google Scholar 

  22. Lee, C., Hsu, C.: A secure biometric-based remote user authentication with key agreement scheme using extended chaotic maps. Nonlinear Dyn. 71, 201–211 (2013)

    Article  MathSciNet  Google Scholar 

  23. Guo, C., Chang, C.C.: Chaotic maps-based password-authenticated key agreement using smart cards. Commun. Nonlinear Sci. Numer. Simul. (2012). doi:10.1016/j.cnsns.2012.09.032

    Google Scholar 

  24. Wang, X., Zhao, J.: An improved key agreement protocol based on chaos. Commun. Nonlinear Sci. Numer. Simul. 15, 4052–4057 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  25. Yoon, E., Jeon, I.: An efficient and secure Diffie–Hellman key agreement protocol based on Chebyshev chaotic map. Commun. Nonlinear Sci. Numer. Simul. 16, 2383–2389 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  26. Lai, H., Xiao, J., Li, L., Yang, Y.: Applying semigroup property of enhanced Chebyshev polynomials to anonymous authentication protocol. Math. Probl. Eng. (2012). doi:10.1155/2012/454823

    MathSciNet  Google Scholar 

  27. Zhao, F., Gong, P., Li, S., Li, M., Li, P.: Cryptanalysis and improvement of a three-party key agreement protocol using enhanced Chebyshev polynomials. Nonlinear Dyn. (2013). doi:10.1007/s11071-013-0979-4

    Google Scholar 

  28. Lee, C., Li, C., Hsu, C.: A three-party password-based authenticated key exchange protocol with user anonymity using extended chaotic maps. Nonlinear Dyn. 73, 125–132 (2013)

    Article  MathSciNet  Google Scholar 

  29. Yang, J., Cao, T.: Provably secure three-party password authenticated key exchange protocol in the standard model. J. Syst. Softw. 85, 340–350 (2012)

    Article  Google Scholar 

  30. Wu, S., Chen, K., Pu, Q., Zhu, Y.: Cryptanalysis and enhancements of efficient three-party password-based key exchange scheme. Int. J. Commun. Syst. (2012). doi:10.1002/dac.1362

    Google Scholar 

  31. Zhang, L.: Cryptanalysis of the public key encryption based on multiple chaotic systems. Chaos Solitons Fractals 37(3), 669–674 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  32. Xiao, D., Shih, F., Liao, X.: A chaos-based hash function with both modification detection and localization capabilities. Commun. Nonlinear Sci. Numer. Simul. 15, 2254–2261 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  33. Jansma, N., Arrendondo, B.: Performance comparison of elliptic curve and RSA digital signatures. http://www.nicj.net/files/performance_comparison_of_elliptic_curve_and_rsa_digital_signatures.pdf (2013/5/1)

  34. Bergamo, P., D’Arco, P., Santis, A., Kocarev, L.: Security of public key cryptosystems based on Chebyshev polynomials. IEEE Trans. Circuits Syst. I 52, 1382–1393 (2005)

    Article  Google Scholar 

  35. Kocarev, L., Lian, S.: Chaos-Based Cryptography: Theory, Algorithms and Applications, pp. 53–54. Springer, Berlin (2011)

    Book  Google Scholar 

  36. Pareek, N.K., Patidar, V., Sud, K.K.: Discrete chaotic cryptography using external key. Phys. Lett. A 309, 75–82 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  37. Li, Z., Cui, Y., Xu, H.: Fast algorithms of public key cryptosystem based on Chebyshev polynomials over finite field. J. China Univ. Post Telecommun. 18(2), 86–93 (2011)

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by National Natural Science Foundation of China (No. 61070153), the Major State Basic Research Development (973) Program of China (No. 2013CB834205), Natural Science Foundation of Zhejiang province (No. LZ12F02005), and Opening Fund of Top Key Discipline of Computer Software and Theory in Zhejiang Provincial Colleges at Zhejiang Normal University (No. ZSDZZZZXK35).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qi Xie.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xie, Q., Zhao, J. & Yu, X. Chaotic maps-based three-party password-authenticated key agreement scheme. Nonlinear Dyn 74, 1021–1027 (2013). https://doi.org/10.1007/s11071-013-1020-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-013-1020-7

Keywords

Navigation