Skip to main content
Log in

Global analysis of a Holling type II predator–prey model with a constant prey refuge

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

A global analysis of a Holling type II predator–prey model with a constant prey refuge is presented. Although this model has been much studied, the threshold condition for the global stability of the unique interior equilibrium and the uniqueness of its limit cycle have not been obtained to date, so far as we are aware. Here we provide a global qualitative analysis to determine the global dynamics of the model. In particular, a combination of the Bendixson–Dulac theorem and the Lyapunov function method was employed to judge the global stability of the equilibrium. The uniqueness theorem of a limit cycle for the Lineard system was used to show the existence and uniqueness of the limit cycle of the model. Further, the effects of prey refuges and parameter space on the threshold condition are discussed in the light of sensitivity analyses. Additional interesting topics based on the discontinuous (or Filippov) Gause predator–prey model are addressed in the discussion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Bernardo, M.D., Budd, C.J., Champneys, A.R., Kowalczyk, P., Nordmark, A.B., Tost, G.O., Piiroinen, P.T.: Bifurcations in nonsmooth dynamical systems. SIAM Rev. 50, 629–701 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  2. Blower, S.M., Dowlatabadi, H.: Sensitivity and uncertainty analysis of complex-models of disease transmission? An HIV model, as an example. Int. Stat. Rev. 62, 229–243 (1994)

    Article  MATH  Google Scholar 

  3. Brogliato, B.: Nonsmooth Mechanics. Springer, New York (1999)

    Book  MATH  Google Scholar 

  4. Chen, L., Chen, F., Chen, L.: Qualitative analysis of a predator–prey model with Holling type II functional response incorporating a constant prey refuge. Nonlinear Anal., Real World Appl. 11, 246–252 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  5. Chen, L.S., Jing, Z.J.: The existence and uniqueness of limit cycle of predator–prey differential equations. Chin. Sci. Bull. 9, 521–523 (1984)

    MathSciNet  Google Scholar 

  6. Cheng, K.S.: Uniqueness of a limit cycle for a predator–prey system. SIAM J. Math. Anal. 12, 541–548 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  7. Costa, M.I.S.: Harvesting induced fluctuations: Insights from a threshold management policy. Math. Biosci. 205, 77–82 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  8. Costa, M.I.S., Meza, M.E.M.: Application of a threshold policy in the management of multispecies fisheries and predator culling. IMA Math. Med. Biol. 23, 63–75 (2006)

    Article  MATH  Google Scholar 

  9. Costa, M.I.S., Kaszkurewicz, E., Bhaya, A., Hsu, L.: Achieving global convergence to an equilibrium population in predator–prey systems by the use of a discontinuous harvesting policy. Ecol. Model. 128, 89–99 (2000)

    Article  Google Scholar 

  10. Dercole, F., Gragnani, A., Rinaldi, S.: Bifurcation analysis of piecewise smooth ecological models. Theor. Popul. Biol. 72, 197–213 (2007)

    Article  MATH  Google Scholar 

  11. Eduardo, G.O., Rodrigo, R.J.: Dynamic consequences of prey refuges in a simple model system: more prey, fewer predators and enhanced stability. Ecol. Model. 166, 135–146 (2003)

    Article  Google Scholar 

  12. Ermentrout, B.: Simulating, Analyzing, and Animating Dynamical Systems: A Guide to XPPAUT for Researchers and Students. SIAM, Philadelphia (2002)

    Book  Google Scholar 

  13. Filippov, A.F.: Differential Equations with Discontinuous Righthand Sides. Kluwer Academic, Dordrecht (1988)

    Book  Google Scholar 

  14. Gause, G.F., Smaragdova, N.P., Witt, A.A.: Further studies of interaction between predators and prey. J. Anim. Ecol. 5, 1–18 (1936)

    Article  Google Scholar 

  15. Huang, X.C., Merrill, S.J.: Conditions for uniqueness of limit cycles in general predator–prey systems. Math. Biosci. 96, 47–60 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  16. Ko, W., Ryu, K.: Qualitative analysis of a predator-prey model with Holling type II functional response incorporating a prey refuge. J. Differ. Equ. 231, 534–550 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  17. Křivan, V.B.: On the Gause predator–prey model with a refuge: a fresh look at the history. J. Theor. Biol. 274, 67–73 (2011)

    Article  Google Scholar 

  18. Křivan, V.: Behavioral refuges and predator–prey coexistence. J. Theor. Biol. (2013). doi:10.1016/j.jtbi.2012.12.016i

    MATH  Google Scholar 

  19. Kuang, Y., Freedman, H.I.: Uniqueness of limit cycles in Gause-type predator–prey systems. Math. Biosci. 88, 67–84 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  20. Kuang, Y.: Global stability of Gause-type predator–prey systems. J. Math. Biol. 28, 463–474 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  21. Kuznetsov, Y.A., Rinaldi, S., Gragnani, A.: One parameter bifurcations in planar Filippov systems. Int. J. Bifurc. Chaos 13, 2157–2188 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  22. Ma, Z.H., Li, W.L., Zhao, Y.: Effects of prey refuges on a predator–prey model with a class of functional responses: the role of refuges. Math. Biosci. 218, 73–79 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  23. May, R.M.: Limit cycles in predator prey communities. Science 177, 900–902 (1972)

    Article  Google Scholar 

  24. Maynard Smith, J.: Models in Ecology. Cambridge University Press, Cambridge (1974)

    MATH  Google Scholar 

  25. Marino, S., Ian, B., Hogue, I.B., Ray, C.J., Kirschner, D.E.: A methodology for performing global uncertainty and sensitivity analysis in systems biology. J. Theor. Biol. 254, 178–196 (2008)

    Article  Google Scholar 

  26. McNair, J.N.: Stability effects of prey refuges with entry-exit dynamics. J. Theor. Biol. 125, 449–464 (1987)

    Article  MathSciNet  Google Scholar 

  27. McNair, J.N.: The effects of refuges on predator–prey interactions: a reconsideration. Theor. Popul. Biol. 29, 38–63 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  28. Meza, M.E.M., Bhaya, A., Kaszkurewicz, E.: Threshold policies control for predator–prey systems using a control Liapunov function approach. Theor. Popul. Biol. 67, 273–284 (2005)

    Article  MATH  Google Scholar 

  29. Sih, A.: Prey refuges and predator–prey stability. Theor. Popul. Biol. 31, 1–12 (1987)

    Article  MathSciNet  Google Scholar 

  30. Tang, S.Y., Liang, J.H., Xiao, Y.N., Cheke, R.A.: Sliding bifurcations of Filippov two stage pest control models with economic thresholds. SIAM J. Appl. Math. 72, 1061–1080 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  31. Tang, S.Y., Liang, J.H.: Global qualitative analysis of a non-smooth Gause predator-prey model with a refuge. Nonlinear Anal. TMA 76, 165–180 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  32. Utkin, V.I., Guldner, J., Shi, J.X.: Sliding Mode Control in Electro-Mechanical Systems, 2nd edn. Taylor & Francis, London (2009)

    Book  Google Scholar 

  33. Van de Vrande, B.L., Van Campen, D.H., De Kraker, A.: An approximate analysis of dry friction-induced stick-slip vibration by a smoothing procedure. Nonlinear Dyn. 19, 157–169 (1999)

    MATH  Google Scholar 

  34. Wang, Y., Wang, J.Z.: Influence of prey refuge on predator–prey dynamics. Nonlinear Dyn. 67, 191–201 (2012)

    Article  Google Scholar 

  35. Xu, C.J., Shao, Y.F.: Bifurcations in a predator–prey model with discrete and distributed time delay. Nonlinear Dyn. 67, 2207–2223 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  36. Zhang, Z.F., Ding, T.R., Huang, W.Z., Dong, Z.X.: Qualitative Theory of Differential Equations. American Mathematical Society, Providence (2006)

    Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (NSFC, 11171199) and by the Fundamental Research Funds for the Central Universities (GK201305010).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanyi Tang.

Appendix

Appendix

Latin Hypercube Sampling/Partial Rank Correlation Coefficient (LHS/PRCC) sensitivity analysis is an efficient tool often employed in uncertainty analysis to explore the entire parameter space of a model with a minimum number of computer simulations. It involves the combination of two statistical techniques, Latin Hypercube Sampling (LHS) and Partial Rank Correlation Coefficient (PRCC) analysis. The goal of LHS/PRCC sensitivity analysis is to identify key parameters whose uncertainties contribute to prediction imprecision and to rank these parameters by their importance in contributing to this imprecision.

The LHS procedure is implemented by dividing the range of values for a given parameter into equally probable intervals, and the sampling is performed independently for each parameter. LHS can result in an unbiased estimate of the average model output, with the advantage that it requires fewer samples than simple random sampling to achieve the same accuracy. PRCC is a robust sensitivity measure for nonlinear but monotonic relationships between inputs and output, which is considered to be more powerful at determining the sensitivity of a parameter.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tang, G., Tang, S. & Cheke, R.A. Global analysis of a Holling type II predator–prey model with a constant prey refuge. Nonlinear Dyn 76, 635–647 (2014). https://doi.org/10.1007/s11071-013-1157-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-013-1157-4

Keywords

Navigation