Skip to main content
Log in

Solving time-varying inverse kinematics problem of wheeled mobile manipulators using Zhang neural network with exponential convergence

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

A mobile manipulator is a robotic device composed of a mobile platform and a stationary manipulator fixed to the platform. The forward kinematics problem for such mobile manipulators has a mathematical analytic solution; however, the inverse kinematics problem is mathematically intractable (especially for satisfying real-time requirements). To obtain the accurate solution of the time-varying inverse kinematics for mobile manipulators, a special class of recurrent neural network, named Zhang neural network (ZNN), is exploited and investigated in this article. It is theoretically proven that such a ZNN model globally and exponentially converges to the solution of the time-varying inverse kinematics for mobile manipulators. In addition, the kinematics equations of the mobile platform and the manipulator are integrated into one system, and thus the resultant solution can co-ordinate simultaneously the wheels and the manipulator to fulfill the end-effector task. For comparison purposes, a gradient neural network (GNN) is developed for solving time-varying inverse kinematics problem of wheeled mobile manipulators. Finally, we conduct extensive tracking-path simulations performed on a wheeled mobile manipulator using such a ZNN model. The results substantiate the efficacy and high accuracy of the ZNN model for solving time-varying inverse kinematics problem of mobile manipulators. Besides, by comparing the simulation results of the GNN and ZNN models, the superiority of the ZNN model is demonstrated clearly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Fateh, M.M., Khorashadizadeh, S.: Optimal robust voltage control of electrically driven robot manipulators. Nonlinear Dyn. 70, 1445–1458 (2012)

    Article  MathSciNet  Google Scholar 

  2. Chen, C.-T., Pham, H.-V.: Trajectory planning in parallel kinematic manipulators using a constrained multi-objective evolutionary algorithm. Nonlinear Dyn. 67, 1669–1681 (2012)

    Article  MathSciNet  Google Scholar 

  3. Xiao, L., Zhang, Y.: Acceleration-level repetitive motion planning and its experimental verification on a six-link planar robot manipulator. IEEE Trans. Control Syst. Technol. 21, 906–914 (2013)

    Article  MathSciNet  Google Scholar 

  4. Shahri, N.R.: Troch., I.: Collision-avoidance for redundant robots through control of the self-motion of the manipulator. J. Intell. Robot. Syst. 16, 123–149 (1996)

    Article  Google Scholar 

  5. Ding, H., Chan, S.P.: A real-time planning algorithm for obstacle avoidance of redundant robots. J. Intell. Robot. Syst. 12, 1–15 (1996)

    MATH  Google Scholar 

  6. Wang, L.-C.T., Chen, C.C.: A combined optimization method for solving the inverse kinematics problems of mechanical manipulators. IEEE Trans. Robot. Autom. 7, 489–499 (1991)

    Article  Google Scholar 

  7. Roberts, R.G., Maciejewski, A.A.: Repeatable generalized inverse control strategies for kinematically redundant manipulators. IEEE Trans. Autom. Control 38, 689–699 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  8. Marcos, M.daG., Machado, J.A.T., Perdicoúlis, T.P.A.: An evolutionary approach for the motion planning of redundant and hyper-redundant manipulators. Nonlinear Dyn. 60, 115–129 (2010)

    Google Scholar 

  9. Marcos, M.daG., Machado, J.A.T., Perdicoúlis, T.P.A.: A fractional approach for the motion planning of redundant and hyper-redundant manipulators. Signal Process. 91, 562–570 (2011)

    Google Scholar 

  10. Tchoń, K., Muszyński, R.: Singular inverse kinematic problem for robotic manipulators: a normal form approach. IEEE Trans. Robot. Autom. 14, 93–102 (1998)

    Article  Google Scholar 

  11. Gupta, K.C., Kazerounian, K.: Improved numerical solutions of inverse kinematics of robots. In: Proceedings of the IEEE International Conference on Robotics and Automation, pp. 743–748 (1985)

  12. Goldenberg, A.A., Benhahib, B., Fenton, R.G.: A complete generalized solution to the inverse kinematics of robots. IEEE J. Robot. Autom. 1, 14–20 (1985)

    Article  Google Scholar 

  13. Lumelsky, V.J.: Iterative coordinate transformation procedure for one class of robots. IEEE Trans. Syst. Man Cybern. 14, 500–505 (1984)

    Article  Google Scholar 

  14. Angeles, J.: On the numerical solution for the inverse kinematic problem. Int. J. Robot. Res. 4, 21–37 (1985)

    Article  Google Scholar 

  15. Goldenberg, A.A., Lawrence, D.L.: A generalized solution to the inverse kinematics of robotic manipulators. ASME J. Dyn. Syst. Meas. Control 107, 103–106 (1985)

    Article  MATH  Google Scholar 

  16. Goldenberg, A.A., Apkarian, J.A., Smith, H.W.: A new approach to kinematic control of robot manipulators. ASME J. Dyn. Syst. Meas. Control 109, 97–103 (1987)

    Article  MATH  Google Scholar 

  17. Zhang, Z., Zhang, Y.: Acceleration-level cyclic-motion generation of constrained redundant robots tracking different paths. IEEE Trans. Syst. Man Cybern. B 42, 1257–1269 (2012)

    Article  Google Scholar 

  18. Zhang, Y., Wang, J.: A dual neural network for constrained joint torque optimization of kinematically redundant manipulators. IEEE Trans. Syst. Man Cybern. B 32, 654–662 (2002)

    Article  Google Scholar 

  19. Zhang, Y., Ge, S.S., Lee, T.H.: A unified quadratic programming based on dynamical system approach to joint torque optimization of physically constrained redundant manipulators. IEEE Trans. Syst. Man Cybern. B 34, 2126–2132 (2004)

    Article  Google Scholar 

  20. Peng, J., Wang, J., Wang, W.: Neural network based robust hybrid control for robotic system: an H-\(\infty \) approach. Nonlinear Dyn. 65, 421–431 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  21. Fei, J., Ding, F.: Adaptive sliding mode control of dynamic system using RBF neural network. Nonlinear Dyn. 70, 1563–1573 (2012)

    Article  MathSciNet  Google Scholar 

  22. Xiao, L., Zhang, Y.: Zhang neural network versus gradient neural network for solving time-varying linear inequalities. IEEE Trans. Neural Netw. 22, 1676–1684 (2011)

    Article  Google Scholar 

  23. Xiao, L., Zhang, Y.: Two new types of Zhang neural networks solving systems of time-varying nonlinear inequalities. IEEE Trans. Circuits Syst. 59, 2363–2373 (2012)

    Article  MathSciNet  Google Scholar 

  24. Xiao, L., Zhang, Y.: Different Zhang functions resulting in different ZNN models demonstrated via time-varying linear matrix–vector inequalities solving. Neurocomputing 121, 140–149 (2013)

    Article  Google Scholar 

  25. Lee, J.K., Cho, H.S.: Mobile manipulator motion planning for multiple tasks using global optimization approach. J. Intell. Robot. Syst. 18, 169–190 (1997)

    Article  Google Scholar 

  26. Bayle, B., Fourquet, J.Y., Renaud, M.: Manipulability of wheeled mobile manipulators: application to motion generation. Int. J. Res. Robot. 22, 565–581 (2003)

    Article  Google Scholar 

  27. Xu, D., Zhao, D., Yi, J., Tan, X.: Trajectory tracking control of omnidirectional wheeled mobile manipulators: robust neural network-based sliding mode approach. IEEE Trans. Syst. Man Cybern. B 39, 788–799 (2009)

    Article  Google Scholar 

  28. Tchoń, K., Jakubiak, J.: A repeatable inverse kinematics algorithm with linear invariant subspaces for mobile manipulators. IEEE Trans. Syst. Man Cybern. B 35, 1051–1057 (2005)

    Article  Google Scholar 

  29. Tchoń, K.: Repeatable, extended Jacobian inverse kinematics algorithm for mobile manipulators. Syst. Control Lett. 55, 87–93 (2006)

    Article  MATH  Google Scholar 

  30. Tchoń, K.: On inverse kinematics of stationary and mobile manipulators. In: Proceedings of the Second Workshop on Robot Motion and Control, pp. 39–44 (2001)

  31. Pin, F.G., Culioli, J.C.: Multi-criteria position and configuration optimization for redundant platform/manipulator systems. In: Proceedings of the IEEE Workshop on Intelligent Robots and Systems, pp. 103–107 (1990)

  32. Pin, F.G., Culioli, J.C.: Optimal positioning of redundant manipulator-platform systems for maximum task efficiency. In: Proceedings of the International Symposium on Robotics and Manufacturing, pp. 489–495 (1990)

  33. Miksch, W., Schroeder, D.: Performance-functional based controller design for a mobile manipulator. In: Proceedings of the IEEE International Conference on Robotics and Automation, pp. 227–232 (1992)

  34. Divelbiss, A.W., Wen, J.T.: A path space approach to nonholonomic motion planning in the presence of obstacles. IEEE Trans. Robot. Autom. 13, 443–451 (1997)

    Article  Google Scholar 

  35. Zhong, G., Kobayashi, Y., Hoshino, Y., Emaru, T.: System modeling and tracking control of mobile manipulator subjected to dynamic interaction and uncertainty. Nonlinear Dyn. 73, 167–182 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  36. Hendzel, Z.: An adaptive critic neural network for motion control of a wheeled mobile robot. Nonlinear Dyn. 50, 849–855 (2007)

    Article  MATH  Google Scholar 

  37. Yu, Q., Chen, I.M.: A general approach to the dynamics of nonholonomic mobile manipulator systems. J. Dyn. Syst. Meas. Control Trans. ASME 124, 512–521 (2002)

    Google Scholar 

  38. Zhang, Y., Chen, K., Tan, H.Z.: Performance analysis of gradient neural network exploited for online time-varying matrix inversion. IEEE Trans. Autom. Control 54, 1940–1945 (2009)

    Article  MathSciNet  Google Scholar 

  39. Ge, S.S., Yang, C., Lee, T.H.: Adaptive predictive control using neural network for a class of pure-feedback systems in discrete time. IEEE Trans. Neural Netw. 19, 1599–1614 (2008)

    Article  Google Scholar 

  40. Yang, C., Ge, S.S., Xiang, C., Chai, T., Lee, T.H.: Output feedback NN control for two classes of discrete-time systems with unknown control directions in a unified approach. IEEE Trans. Neural Netw. 19, 1873–1886 (2008)

    Article  Google Scholar 

Download references

Acknowledgments

This study is supported by the National Natural Science Foundation of China (under Grants 61075121 and 60935001), the Specialized Research Fund for the Doctoral Program of Institutions of Higher Education of China (under Project Number 20100171110045), and the Sun Yat-sen University Innovative Talents Cultivation Program for PhD students. Besides, both the authors of the article are the joint claimants of the first authorship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yunong Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xiao, L., Zhang, Y. Solving time-varying inverse kinematics problem of wheeled mobile manipulators using Zhang neural network with exponential convergence. Nonlinear Dyn 76, 1543–1559 (2014). https://doi.org/10.1007/s11071-013-1227-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-013-1227-7

Keywords

Navigation