Skip to main content
Log in

Primary and secondary resonance analyses of clamped–clamped micro-beams

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Nonlinear harmonic vibration of a micro-electro-mechanical beam is investigated, and the micro-actuator, which is considered in this study, is a special kind of electrostatic symmetric actuators. A fully clamped micro-beam with a uniform thickness is modeled as an electrostatic micro-actuator with two symmetric potential walls. The nonlinear forced vibration of the micro-beam is analyzed, and the non-dimensional governing equation of motion, using the Galerkin method, is developed. Higher-order nonlinear terms in the equation of motion are taken into account for the first time, and the perturbation method is utilized regarding these terms and hence, all the resonant cases have been considered. The multiple scales method is employed to solve the nonlinear equations, and therefore, the problem does not deal with the large deformations. The primary and secondary resonance conditions are determined, and the corresponding secular terms in each case are recognized. Harmonic responses are obtained for different cases of resonance, and eventually, the stable and unstable portions of the responses are identified. A parametric sensitivity study is carried out to examine the effects of different parameters on the amplitude–frequency characteristic equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

References

  1. Qian, Y.H., Ren, D.X., Lai, S.K., Chen, S.M.: Analytical approximations to nonlinear vibration of an electrostatically actuated microbeam. Commun. Nonlinear Sci. Numer. Simul. 17, 1947–1955 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  2. Abdel-Rahman, E.M., Younis, M.I., Nayfeh, A.H.: Characterization of the mechanical behavior of an electrically actuated microbeam. J. Micromech. Microeng. 12, 759–766 (2002)

    Article  Google Scholar 

  3. Younis, M.I., Nayfeh, A.H.: A study of the nonlinear response of a resonant microbeam to an electric actuation. Nonlinear Dyn. J. 31, 91–117 (2003)

    Article  MATH  Google Scholar 

  4. Kuang, J.-H., Chen, C.J.: Dynamic characteristics of shaped micro-actuators solved using the differential quadrature method. J. Micromech. Microeng. 14, 647–655 (2004)

    Article  Google Scholar 

  5. Nayfeh, A.H., Younis, M.I.: Dynamics of MEMS resonators under superharmonic and subharmonic excitations. J. Micromech. Microeng. 15, 1840–1847 (2005)

    Article  Google Scholar 

  6. Rhoads, J.F., Shaw, S.W., Turner, K.L.: The nonlinear response of resonant microbeam systems with purely-parametric electrostatic actuation. J. Micromech. Microeng. 16, 890–899 (2006)

    Article  Google Scholar 

  7. Younis, M.I., Alsaleem, F., Jordy, D.: The response of clamped–clamped microbeams under mechanical shock. Int. J. Non-linear Mech. 42, 643–657 (2007)

    Article  Google Scholar 

  8. Batra, R.C., Porfiri, M., Spinello, D.: Electromechanical model of electrically actuated narrow microbeams. J. Microelectromech. Syst. 15, 1175–1189 (2006)

    Article  Google Scholar 

  9. Batra, R.C., Porfiri, M., Spinello, D.: Vibrations of narrow microbeams predeformed by an electric field. J. Sound Vib. 309, 600–612 (2008)

    Article  Google Scholar 

  10. Younesian, D., Askari, H., Saadatnia, Z.: Frequency analysis of strongly nonlinear generalized Duffing oscillators using He’s frequency–amplitude formulation and He’s energy balance method. Comput. Math. Appl. 59, 3222–3228 (2010)

    Google Scholar 

  11. Younesian, D., Askari, H., Saadatnia, Z.: Analytical approximate solutions for the generalized nonlinear oscillator. Appl. Anal. 91, 965–977 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  12. Younesian, D., Askari, H., Saadatnia, Z., Yildirim, A.: Periodic solutions for the generalized nonlinear oscillators containing fraction order elastic force. Int. J. Nonlinear Sci. Numer. Simul. 11, 1027–1032 (2010)

    Article  Google Scholar 

  13. Kuang, J.H., Chen, C.J.: Adomian decomposition method used for solving nonlinear pull-in behavior in electrostatic micro-actuators. Math. Comput. Model. 41, 1479–1491 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  14. He, X.J., Wu, Q., Wang, Y., Song, M.-X., Yin, J.H.: Numerical simulation and analysis of electrically actuated microbeam-based MEMS capacitive switch. Microsyst. Technol. 15, 301–307 (2009)

    Article  Google Scholar 

  15. Xia, W., Wang, L., Yin, L.: Nonlinear non-classical microscale beams: static bending, post buckling and free vibration. Int. J. Eng. Sci. 48, 2044–2053 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  16. Mojahedi, M., Moghimi-Zand, M., Ahmadian, M.T., Babaei, M.: Analytic solutions to the oscillatory behavior and primary resonance of electrostatically actuated microbridges. Int. J. Struct. Stab. Dyn. 11, 119–1137 (2011)

    Google Scholar 

  17. Fu, Y., Zhang, J., Wan, L.: Application of the energy balance method to a nonlinear oscillator arising in the microelectromechanical system (MEMS). Curr. Appl. Phys. 11, 482–485 (2011)

    Article  Google Scholar 

  18. Rajabi, F., Ramezani, S.: A nonlinear microbeam model based on strain gradient elasticity theory with surface energy. Arch. Appl. Mech. 82, 363–376 (2012)

    Article  Google Scholar 

  19. Zhao, J., Zhou, S., Wang, B., Wang, X.: Nonlinear microbeam model based on strain gradient theory. Appl. Math. Model. 36, 2674–2686 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  20. Ke, L.L., Wang, Y.S., Yang, J., Kitipornchai, S.: Nonlinear free vibration of size-dependent functionally graded microbeams. Int. J. Eng. Sci. 50, 256–267 (2012)

    Article  MathSciNet  Google Scholar 

  21. Wang, Y.G., Lin, W.H., Feng, Z.J., Li, X.M.: Characterization of extensional multi-layer microbeams in pull-in phenomenon and vibrations. Int. J. Mech. Sci. 54, 225–233 (2012)

    Article  Google Scholar 

  22. Hassanpour, P.A., Esmailzadeh, E., Cleghorn, W.L., Mills, J.K.: Experimental measurement of resonance frequencies of asymmetric micro-bridge resonators. J. Intell. Mater. Syst. Struct. 22, 127–136 (2011)

    Article  Google Scholar 

  23. Hassanpour, P.A., Cleghorn, W.L., Esmailzadeh, E., Mills, J.K.: Nonlinear vibration of micromachined asymmetric resonators. J. Sound Vib. 329, 2547–2564 (2010)

    Article  Google Scholar 

  24. Hassanpour, P.A., Cleghorn, W.L., Esmailzadeh, E., Mills, J.K.: Vibration analysis of micro-machined beam-type resonators. J. Sound Vib. 308, 287–301 (2007)

    Article  Google Scholar 

  25. Abdel-Rahman, E.M., Nayfeh, A.H.: Secondary resonances of electrically actuated resonant microsensors. J. Micromech. Microeng. 13, 491–501 (2003)

    Google Scholar 

  26. Esmailzadeh, E., Nakhaie-Jazar, G.: Periodic solution of a Mathieu–Duffing type equation. Int. J. Non-linear Mech. 32(5), 905–912 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  27. Esmailzadeh, E., Nakhaie-Jazar, G., Mehri, B.: Existence of periodic solution for beams with harmonically variable length. J Vib. Acoust. 119(3), 485–488 (1997)

    Article  Google Scholar 

  28. Esmailzadeh, E., Mehri, B., Nakhaie-Jazar, G.: Periodic solution of a second order, autonomous, nonlinear system. Nonlinear Dyn. J. 10(4), 307–316 (1996)

    Article  MathSciNet  Google Scholar 

  29. Younesian, D., Esmailzadeh, E.: Non-linear vibration of variable speed rotating viscoelastic beams. Nonlinear Dyn. J. 60(1), 193–205 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  30. Younesian, D., Esmailzadeh, E., Sedaghati, R.: Existence of periodic solutions for the generalized form of Mathieu equation. Nonlinear Dyn. J. 39(4), 335–348 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  31. Krylov, S., Maimon, R.: Pull-in dynamics of an elastic beam actuated by continuously distributed electrostatic force. J. Vib. Acoust. 126, 332–342 (2004)

    Article  Google Scholar 

  32. Krylov, S., Harari, I., Cohen, Y.: Stabilization of electrostatically actuated microstructures using parametric excitation. J. Micromech. Microeng. 15, 1188–1204 (2005)

    Article  Google Scholar 

  33. Krylov, S., Ilic, B., Lulinsky, S.: Bistability of curved microbeams actuated by fringing electrostatic fields. Nonlinear Dyn. J. 66, 403–426 (2011)

    Article  MathSciNet  Google Scholar 

  34. Rezazadeh, G., Madinei, H., Shabani, R.: Study of parametric oscillation of an electrostatically actuated microbeam using variational iteration method. Appl. Math. Model. 36, 430–443 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  35. Ekici, H., Boyaci, H.: Effects of non-ideal boundary conditions on vibrations of microbeams. J. Vib. Control 13(9–10), 1369–1378 (2007)

    Google Scholar 

  36. Al Saleem, F.M., Younis, M.I.: Theoretical and experimental investigation of dynamic instabilities in electrostatic MEMS. Proceedings of the XIth International Congress and Exposition, 2–5 June (2008) Orlando, FL, USA

  37. Elnaggar, A.M., El-Bassiouny, A.F., Mosa, A.: Harmonic and sub-harmonic resonance of MEMS subjected to a weakly non-linear parametric and external excitations. Int. J. Appl. Math. Res. 2(2), 252–263 (2013)

    Google Scholar 

  38. Alsaleem, F.M., Younis, M.I., Ouakad, H.M.: On the nonlinear resonances and dynamic pull-in of electrostatically actuated resonator. J. Micromech. Microeng. 19(4), 045013 (2009)

    Article  Google Scholar 

  39. Alsaleem, F.M., Younis, M.I., Ruzziconi, L.: An experimental and theoretical investigation of dynamic pull-in in MEMS resonators actuated electrostatically. J. Microelectromech. Syst. 19(4), 794–806 (2010)

    Article  Google Scholar 

  40. Nayfeh, A.H., Younis, M.I., Abdel-Rahman, E.M.: Dynamic pull-in phenomenon in MEMS resonators. Nonlinear Dyn. J. 48(1–2), 153–163 (2007)

    Article  MATH  Google Scholar 

  41. Fargas-Marques, A., Casals-Terré, J., Shkel, A.M.: Resonant pull-in condition in parallel-plate electrostatic actuators. J. Microelectromech. Syst. 16(5), 1044–1053 (2007)

    Google Scholar 

  42. De, S.K., Aluru, N.R.: Full-Lagrangian schemes for dynamic analysis of electrostatic MEMS. J. Microelectromech. Syst. 13(5), 737–758 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Esmailzadeh.

Appendix

Appendix

The equation including the different secondary resonance conditions:

$$\begin{aligned}&\varepsilon ^{1}\,:\,\,\,\,D_0 ^{2}u_1 +\omega _0 ^{2}u_1 \,\,= 10e^{i\varOmega T_0 }\varLambda ^{5}\varOmega ^{2}a_1 +5e^{3i\varOmega T_0}\nonumber \\&\quad \times \varLambda ^{5}\varOmega ^{2}a_1 +e^{5i\varOmega T_0 }\varLambda ^{5}\varOmega ^{2}a_1 +24e^{iT_0 \omega _0 }\varLambda ^{4}\varOmega ^{2}Aa_1\nonumber \\&\quad +16e^{-2i\varOmega T_0 +iT_0 \omega _0 }\varLambda ^{4}\varOmega ^{2}Aa_1 +16e^{2i\varOmega T_0 +iT_0 \omega _0 }\nonumber \\&\quad \times \varLambda ^{4}\varOmega ^{2}Aa_1 +4e^{-4i\varOmega T_0 +iT_0 \omega _0 }\varLambda ^{4}\varOmega ^{2}Aa_1\nonumber \\&\quad +\,4e^{4i\varOmega T_0 +iT_0 \omega _0 }\varLambda ^{4}\varOmega ^{2}Aa_1 \nonumber \\ \end{aligned}$$
$$\begin{aligned}&\quad +\,18e^{-i\varOmega T_0 +2iT_0 \omega _0 } \varLambda ^{3}\varOmega ^{2}A^{2}a_1\nonumber \\&\quad +\,18e^{i\varOmega T_0 +2iT_0 \omega _0 }\varLambda ^{3}{\grave{\hbox {U}}}^{2}A^{2}a_1\nonumber \\&\quad +\,6e^{-3i\varOmega T_0 +2iT_0 \omega _0 }\varLambda ^{3}\varOmega ^{2}A^{2}a_1 +6e^{3i\varOmega T_0 +2iT_0 \omega _0 }\nonumber \\&\quad \times \varLambda ^{3}\varOmega ^{2}A^{2}a_1 +8e^{3iT_0 \omega _0 }\varLambda ^{2}\varOmega ^{2}A^{3}a_1+4e^{-2i\varOmega T_0 +3iT_0 \omega _0 }\nonumber \\&\quad \times \varLambda ^{2}\varOmega ^{2}A^{3}a_1 +4e^{2i\varOmega T_0 +3iT_0 \omega _0 }\varLambda ^{2}\varOmega ^{2}A^{3}a_1 \nonumber \\&\quad +\,e^{-i\varOmega T_0 +4iT_0 \omega _0 }\varLambda \varOmega ^{2}A^{4}a_1 +e^{i\varOmega T_0 +4iT_0 \omega _0 }\varLambda \varOmega ^{2}A^{4}a_1\nonumber \\&\quad +\,36e^{i\varOmega T_0 }\varLambda ^{3}\varOmega ^{2}A{\bar{A}} a_1 +12e^{3i\varOmega T_0 }\varLambda ^{3}\varOmega ^{2}A{\bar{A}} a_1\nonumber \\&\quad +24e^{iT_0 \omega _0 }\varLambda ^{2}\varOmega ^{2}A^{2}{\bar{A}} a_1 +12e^{2i\varOmega T_0 +iT_0 \omega _0 }\varLambda ^{2}\varOmega ^{2}A^{2}{\bar{A}}a_1\nonumber \\&\quad +\,4\hbox {e}^{-i {\varOmega } T_{0}+2iT_{0}\omega _{0}}{\varLambda }{\varOmega }^{2}A^{3}{\bar{A}}a_{1}\nonumber \\&\quad +\,4e^{i {\varOmega } T_{0}+2iT_{0}\omega _{0}}{\varLambda }{{\varOmega }^{2}}{A^{3}}{\bar{A}}a_{1}\nonumber \\&\quad +\,12e^{2i\varOmega T_0 -iT_0 \omega _0 }\varLambda ^{2}\varOmega ^{2}A{\bar{A}} ^{2}a_1 +6e^{i\varOmega T_0 }\varLambda \varOmega ^{2}A^{2}{\bar{A}} ^{2}a_1\nonumber \\&\quad +\,3e^{i\varOmega T_0 }\varLambda ^{3}\varOmega ^{2}a_2 +e^{3i\varOmega T_0 }\varLambda ^{3}\varOmega ^{2}a_2+4e^{iT_0 \omega _0 }\varLambda ^{2}\varOmega ^{2}Aa_2 \nonumber \\&\quad +\,2e^{-2i\varOmega T_0 +iT_0 \omega _0 }\varLambda ^{2}\varOmega ^{2}Aa_2 +2e^{2i\varOmega T_0 +iT_0 {\grave{\mathrm{u}}}_0 }\varLambda ^{2}\varOmega ^{2}Aa_2 \nonumber \\&\quad +\,e^{-i\varOmega T_0 +2iT_0 \omega _0 }\varLambda \varOmega ^{2}A^{2}a_2 +e^{i\varOmega T_0 +2iT_0 \omega _0 }\varLambda \varOmega ^{2}A^{2}a_2\nonumber \\&\quad +\,2e^{i\varOmega T_0 }\varLambda \varOmega ^{2}A{\bar{A}} a_2 -ie^{i\varOmega T_0 }\varLambda \mu \varOmega a_3-3e^{i\varOmega T_0 }\varLambda ^{3}a_5 \nonumber \\&\quad -\,e^{3i\varOmega T_0 }\varLambda ^{3}a_5 -6e^{iT_0 \omega _0 }\varLambda ^{2}Aa_5 -3e^{-2i\varOmega T_0 +iT_0 \omega _0 }\nonumber \\&\quad \times \varLambda ^{2}Aa_5-3e^{2i\varOmega T_0 +iT_0 \omega _0 }\varLambda ^{2}Aa_5-3e^{-i\varOmega T_0 +2iT_0 \omega _0 } \nonumber \\&\quad \times \varLambda A^{2}a_5 -3e^{i\varOmega T_0 +2iT_0 \omega _0 }\varLambda A^{2}a_5 -e^{3iT_0 \omega _0 }A^{3}a_5\nonumber \\&\quad -\,6e^{-i\varOmega T_0 }\varLambda A{\bar{A}} a_5 -3e^{iT_0 \omega _0 }A^{2}{\bar{A}} a_5-10e^{i\varOmega T_0 }\varLambda ^{5}a_6 \nonumber \\&\quad -\,5e^{3i\varOmega T_0 }\varLambda ^{5}a_6 -e^{5i\varOmega T_0 }\varLambda ^{5}a_6 -30e^{iT_0 \omega _0 }\varLambda ^{4}Aa_6 \nonumber \\&\quad -\,20e^{-2i\varOmega T_0 +iT_0 \omega _0 }\varLambda ^{4}Aa_6 -20e^{2i\varOmega T_0 +iT_0 \omega _0 }\varLambda ^{4}Aa_6\nonumber \\&\quad -\,5e^{-4i\varOmega T_0 +iT_0 \omega _0 }\varLambda ^{4}Aa_6-5e^{4i\varOmega T_0 +iT_0 {\grave{\mathrm{u}}}_0}\varLambda ^{4}Aa_6 \nonumber \\&\quad -30e^{-i\varOmega T_0 +2iT_0 \omega _0 }\varLambda ^{3}A^{2}a_6 -30e^{i\varOmega T_0 +2iT_0 \omega _0 }\varLambda ^{3}A^{2}a_6 \nonumber \\&\quad -\,10e^{3i\varOmega T_0 +2iT_0 \omega _0 }\varLambda ^{3}A^{2}a_6 -20e^{3iT_0 \omega _0 }\varLambda ^{2}A^{3}a_6 \nonumber \\&\quad -\,10e^{2i\varOmega T_0 +3iT_0 \omega _0 }\varLambda ^{2}A^{3}a_6 -5e^{i\varOmega T_0 +4iT_0 \omega _0 }\varLambda A^{4}a_6\nonumber \\&\quad -\,e^{5iT_0 \omega _0 }A^{5}a_6 -60e^{i\varOmega T_0 }\varLambda ^{3}A{\bar{A}} a_6 -20e^{3i\varOmega T_0 }\varLambda ^{3}A{\bar{A}} a_6\nonumber \\&\quad -60e^{iT_0 \omega _0 }\varLambda ^{2}A^{2}{\bar{A}} a_6 -30e^{2i\varOmega T_0 +iT_0 \omega _0 }\varLambda ^{2}A^{2}{\bar{A}} a_6\nonumber \\&\quad -\,20e^{i\varOmega T_0 +2iT_0 \omega _0 }\varLambda A^{3}{\bar{A}} a_6 -5e^{3iT_0 \omega _0 }A^{4}{\bar{A}} a_6\nonumber \\&\quad -\,10e^{3i\varOmega T_0 -2iT_0 \omega _0 }\varLambda ^{3}{\bar{A}} ^{2}a_6 -30e^{2i\varOmega T_0 -iT_0 \omega _0 }\varLambda ^{2}A{\bar{A}} ^{2}a_6\nonumber \\&\quad -30e^{i\varOmega T_0 }\varLambda A^{2}{\bar{A}} ^{2}a_6 -10e^{iT_0 \omega _0 }A^{3}{\bar{A}} ^{2}a_6\nonumber \\&\quad -\,10e^{2i\varOmega T_0 -3iT_0 \omega _0 }\varLambda ^{2}{\bar{A}} ^{3}a_6 -20e^{i\varOmega T_0 -2iT_0 \omega _0 }\varLambda A{\bar{A}} ^{3}a_6 \nonumber \\&\quad -\,5e^{i\varOmega T_0 -4iT_0 \omega _0 }\varLambda {\bar{A}} ^{4}a_6-35e^{i\varOmega T_0 }\varLambda ^{7}a_7 -21e^{3i\varOmega T_0}\nonumber \\&\quad \times \varLambda ^{7}a_7 -7e^{5i\varOmega T_0 }\varLambda ^{7}a_7-e^{7i\varOmega T_0 }\varLambda ^{7}a_7-140e^{iT_0 \omega _0 }\\&\quad \times \varLambda ^{6}Aa_7 -105e^{2i\varOmega T_0 +iT_0 \omega _0 }\varLambda ^{6}Aa_7 -42e^{4i\varOmega T_0 +iT_0 \omega _0 } \nonumber \\&\quad \times \varLambda ^{6}Aa_7-7e^{6i\varOmega T_0 +iT_0 \omega _0 }\varLambda ^{6}Aa_7 -210e^{i\varOmega T_0 +2iT_0 \omega _0 }\nonumber \\ \end{aligned}$$
$$\begin{aligned}&\quad \times \varLambda ^{5}A^{2}a_7 -105e^{3i\varOmega T_0 +2iT_0 \omega _0 }\varLambda ^{5}A^{2}a_7\nonumber \\&\quad -\,21e^{5i\varOmega T_0 +2iT_0 \omega _0 } \varLambda ^{5}A^{2}a_7 -210e^{3iT_0 \omega _0 }\varLambda ^{4}A^{3}a_7\nonumber \\&\quad -140e^{2i\varOmega T_0 +3iT_0 \omega _0 }\varLambda ^{4}A^{3}a_7\nonumber \\&\quad -\,35e^{4i\varOmega T_0 +3iT_0 \omega _0 }\varLambda ^{4}A^{3}a_7 -105e^{i\varOmega T_0 +4iT_0 \omega _0 }\nonumber \\&\quad \times \varLambda ^{3}A^{4}a_7 -35e^{3i\varOmega T_0 +4iT_0 \omega _0 }\varLambda ^{3}A^{4}a_7\nonumber \\&\quad -\,42e^{5iT_0 \omega _0 }\varLambda ^{2}A^{5}a_7-21e^{2i\varOmega T_0 +5iT_0 \omega _0 }\varLambda ^{2}A^{5}a_7 \nonumber \\&\quad -7e^{i\varOmega T_0 +6iT_0 \omega _0 }\varLambda A^{6}a_7-e^{7iT_0 \omega _0 }A^{7}a_7\nonumber \\&\quad -105e^{2i\varOmega T_0 -iT_0 \omega _0 }\varLambda ^{6}{\bar{A}} a_7\nonumber \\&\quad -\,42e^{4i\varOmega T_0 -iT_0 \omega _0 }\varLambda ^{6}{\bar{A}} a_7 -7e^{6i\varOmega T_0 -iT_0 \omega _0 }\varLambda ^{6}{\bar{A}} a_7 \nonumber \\&\quad -\,420e^{i\varOmega T_0 }\varLambda ^{5}A{\bar{A}} a_7 -210e^{3i\varOmega T_0 }\varLambda ^{5}A{\bar{A}} a_7\nonumber \\&\quad -\,42e^{5i\varOmega T_0 }\varLambda ^{5}A{\bar{A}} a_7 -630e^{iT_0 \omega _0 }\varLambda ^{4}A^{2}{\bar{A}} a_7 \nonumber \\&\quad -\,420e^{2i\varOmega T_0 +iT_0 \omega _0 }\varLambda ^{4}A^{2}{\bar{A}} a_7 -105e^{4i\varOmega T_0 +iT_0 \omega _0 }\nonumber \\&\quad \times \varLambda ^{4}A^{2}{\bar{A}} a_7 -420e^{i\varOmega T_0 +2iT_0 \omega _0 }\varLambda ^{3}A^{3}{\bar{A}} a_7 \nonumber \\&\quad -\,140e^{3i\varOmega T_0 +2iT_0 \omega _0 }\varLambda ^{3}A^{3}{\bar{A}} a_7 \nonumber \\&\quad -\,210e^{3iT_0 \omega _0 }\varLambda ^{2}A^{4}{\bar{A}} a_7 -105e^{2i\varOmega T_0 +3iT_0 \omega _0 }\varLambda ^{2}A^{4}{\bar{A}} a_7\nonumber \\&\quad -\,42e^{i\varOmega T_0 +4iT_0 \omega _0 }\varLambda A^{5}{\bar{A}} a_7 -7e^{5iT_0 \omega _0 }A^{6}{\bar{A}} a_7\nonumber \\&\quad -\,210e^{i\varOmega T_0 -2iT_0 \omega _0 }\varLambda ^{5}{\bar{A}} ^{2}a_7 \!-\!105e^{3i\varOmega T_0 -2iT_0 \omega _0 }\varLambda ^{5}{\bar{A}} ^{2}a_7 \nonumber \\&\quad -\,21e^{5i\varOmega T_0 -2iT_0 \omega _0 }\varLambda ^{5}{\bar{A}} ^{2}a_7 -420e^{2i\varOmega T_0 -iT_0 \omega _0 }\nonumber \\&\quad \times \varLambda ^{4}A{\bar{A}} ^{2}a_7 -105e^{4i\varOmega T_0 -iT_0 \omega _0 }\varLambda ^{4}A{\bar{A}} ^{2}a_7-630e^{i\varOmega T_0 } \nonumber \\&\quad \times \varLambda ^{3}A^{2}{\bar{A}} ^{2}a_7 -210e^{3i\varOmega T_0 }\varLambda ^{3}A^{2}{\bar{A}} ^{2}a_7 -420e^{iT_0 \omega _0 } \nonumber \\&\quad \times \varLambda ^{2}A^{3}{\bar{A}} ^{2}a_7-210e^{2i\varOmega T_0 +iT_0 {\grave{\mathrm{u}}}_0}\varLambda ^{2}A^{3}{\bar{A}} ^{2}a_7 \nonumber \\&\quad -\,105e^{i\varOmega T_0 +2iT_0 \omega _0 }\varLambda A^{4}{\bar{A}} ^{2}a_7 -21e^{3iT_0 \omega _0 }A^{5}{\bar{A}} ^{2}a_7\nonumber \\&\quad -\,140e^{2i\varOmega T_0 -3iT_0 \omega _0 }\varLambda ^{4}{\bar{A}} ^{3}a_7 \nonumber \\&\quad -\,35e^{4i\varOmega T_0 -3iT_0 \omega _0 }\varLambda ^{4}{\bar{A}} ^{3}a_7 -420e^{i\varOmega T_0 -2iT_0 \omega _0 }\nonumber \\&\quad \times \varLambda ^{3}A{\bar{A}} ^{3}a_7 -140e^{3i\varOmega T_0 -2iT_0 \omega _0 }\varLambda ^{3}A{\bar{A}} ^{3}a_7 \nonumber \\&\quad -\,210e^{2i\varOmega T_0 -iT_0 \omega _0 }\varLambda ^{2}A^{2}{\bar{A}} ^{3}a_7 -140e^{i\varOmega T_0 }\varLambda A^{3}{\bar{A}} ^{3}a_7\nonumber \\&\quad -\,35e^{iT_0 \omega _0 }A^{4}{\bar{A}} ^{3}a_7-105e^{i\varOmega T_0 -4iT_0 \omega _0 }\varLambda ^{3}{\bar{A}} ^{4}a_7 \nonumber \\&\quad -\,35e^{3i\varOmega T_0 -4iT_0 \omega _0 }\varLambda ^{3}{\bar{A}} ^{4}a_7 -105e^{2i\varOmega T_0 -3iT_0 \omega _0 }\nonumber \\&\quad \times \varLambda ^{2}A{\bar{A}} ^{4}a_7-105e^{i\varOmega T_0 -2iT_0 \omega _0 }\varLambda A^{2}{\bar{A}} ^{4}a_7\nonumber \\&\quad -\,21e^{2i\varOmega T_0 -5iT_0 \omega _0 }\varLambda ^{2}{\bar{A}} ^{5}a_7 -42e^{i\varOmega T_0 -4iT_0 \omega _0 }\varLambda A{\bar{A}} ^{5}a_7 \nonumber \\&\quad -\,7e^{i\varOmega T_0 -6iT_0 \omega _0 }\varLambda {\bar{A}} ^{6}a_7 -ie^{iT_0 \omega _0 }\mu Aa_3 \omega _0 +6e^{iT_0 \omega _0 }\nonumber \\&\quad \times \varLambda ^{4}Aa_1 \omega _0^2 +4e^{2i\varOmega T_0 +iT_0 \omega _0 }\varLambda ^{4}Aa_1 \omega _0^2+e^{4i\varOmega T_0 +iT_0 \omega _0 } \nonumber \\&\quad \times \varLambda ^{4}Aa_1 \omega _0^2+12e^{i\varOmega T_0 +2iT_0 \omega _0 }\varLambda ^{3}A^{2}a_1 \omega _0^2 \nonumber \\&\quad +\,4e^{3i\varOmega T_0 +2iT_0 \omega _0 }\varLambda ^{3}A^{2}a_1 \omega _0^2 +12e^{3iT_0 \omega _0 }\varLambda ^{2}A^{3}a_1 \omega _0^2 \nonumber \\&\quad +\,6e^{2i\varOmega T_0 +3iT_0 \omega _0 }\varLambda ^{2}A^{3}a_1 \omega _0^2 +4e^{i\varOmega T_0 +4iT_0 \omega _0 }\nonumber \\ \end{aligned}$$
$$\begin{aligned}&\quad \times \varLambda A^{4}a_1 \omega _0^2 +e^{5iT_0 \omega _0 }A^{5}a_1 \omega _0^2+4e^{2i\varOmega T_0 -iT_0 \omega _0 }\varLambda ^{4}{\bar{A}} a_1 \omega _0^2 \nonumber \\&\quad +e^{4i\varOmega T_0 -iT_0 \omega _0 }\varLambda ^{4}{\bar{A}} a_1 \omega _0^2 +24e^{i\varOmega T_0 }\varLambda ^{3}A{\bar{A}} a_1 \omega _0^2 \nonumber \\&\quad +\,8e^{3i\varOmega T_0 }\varLambda ^{3}A{\bar{A}} a_1 \omega _0^2 +36e^{iT_0 \omega _0 }\varLambda ^{2}A^{2}{\bar{A}} a_1 \omega _0^2\nonumber \\&\quad +\,18e^{2i\varOmega T_0 +iT_0 \omega _0 }\varLambda ^{2}A^{2}{\bar{A}} a_1 \omega _0^2 +16e^{i\varOmega T_0 +2iT_0 \omega _0 }\nonumber \\&\quad \times \varLambda A^{3}{\bar{A}} a_1 \omega _0^2 +5e^{3iT_0 \omega _0 }A^{4}{\bar{A}} a_1 \omega _0^2 +12e^{i\varOmega T_0 -2iT_0 \omega _0 } \nonumber \\&\quad \times \varLambda ^{3}{\bar{A}} ^{2}a_1 \omega _0^2+4e^{3i\varOmega T_0 -2iT_0 \omega _0 }\varLambda ^{3}{\bar{A}} ^{2}a_1 \omega _0^2\nonumber \\&\quad +\,18e^{2i\varOmega T_0 -iT_0 \omega _0 }\varLambda ^{2}A{\bar{A}} ^{2}a_1 \omega _0^2+24e^{i\varOmega T_0 }\varLambda A^{2}{\bar{A}} ^{2}a_1 \omega _0^2 \nonumber \\&\quad +\,10e^{iT_0 \omega _0 }A^{3}{\bar{A}} ^{2}a_1 \omega _0^2 +6e^{2i\varOmega T_0 -3iT_0 \omega _0 }\varLambda ^{2}{\bar{A}} ^{3}a_1 \omega _0^2 \nonumber \\&\quad +\,16e^{i\varOmega T_0 -2iT_0 \omega _0 }\varLambda A{\bar{A}} ^{3}a_1 \omega _0^2 +4e^{i\varOmega T_0 -4iT_0 \omega _0 }\nonumber \\&\quad \times \varLambda {\bar{A}} ^{4}a_1 \omega _0^2 +2e^{iT_0 \omega _0 }\varLambda ^{2}Aa_2 \omega _0^2+e^{2i\varOmega T_0 +iT_0 \omega _0 } \nonumber \\&\quad \times \varLambda ^{2}Aa_2 \omega _0^2 +2e^{i\varOmega T_0 +2iT_0 \omega _0 }\varLambda A^{2}a_2 \omega _0^2 \nonumber \\&\quad +\,e^{3iT_0 \omega _0 }A^{3}a_2 \omega _0^2+e^{2i\varOmega T_0 -iT_0 \omega _0 }\varLambda ^{2}{\bar{A}} a_2 \omega _0^2\nonumber \\&\quad +\,4e^{i\varOmega T_0 }\varLambda A{\bar{A}} a_2 \omega _0^2 +3e^{iT_0 \omega _0 }A^{2}{\bar{A}} a_2 \omega _0^2 \nonumber \\&\quad +\,2e^{i\varOmega T_0 -2iT_0 \omega _0 }\varLambda {\bar{A}} ^{2}a_2 \omega _0^2 -2ie^{iT_0 \omega _0 }a_3 \omega _0 A^{{\prime }}+c.c.\nonumber \\ \end{aligned}$$
(47)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Younesian, D., Sadri, M. & Esmailzadeh, E. Primary and secondary resonance analyses of clamped–clamped micro-beams. Nonlinear Dyn 76, 1867–1884 (2014). https://doi.org/10.1007/s11071-014-1254-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-014-1254-z

Keywords

Navigation