Skip to main content

Advertisement

Log in

Highly efficient nonlinear energy sink

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The performance of the nonlinear energy sink (NES) that composed of a small mass and essentially nonlinear coupling stiffness with a linear structure is considerably enhanced here by including the negative linear and nonlinear coupling stiffness components. These negative linear and nonlinear stiffness components in the NES are realized here through the geometric nonlinearity of the transverse linear springs. By considering these components in the NES, very intersecting results for passive targeted energy transfer (TET) are obtained. The performance of this modified NES is found here to be much improved than that of all existing NESs studied up to date in the literature. Moreover, nearly 99 % of the input shock energy induced by impulse into the linear structures considered here has been found to be rapidly transferred and locally dissipated by the modified NES. In addition, this modified NES maintains its high performance of shock mitigation in a broadband fashion of the input initial energies where it keeps its high performance even for sever input energies. This is found to be achieved by an immediate cascade of several resonance captures at low- and high- nonlinear normal modes frequencies. The findings obtained here by including the negative linear and nonlinear stiffness components are expected to significantly enrich the application of these stiffness components in the TET field of such nonlinear oscillators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

Abbreviations

\(\hbox {NES}\) :

Nonlinear energy sink

\(\hbox {TET}\) :

Targeted energy transfer

\(\hbox {NNMs}\) :

Nonlinear normal modes

\(\hbox {SSVI}\) :

Single-sided vibro-impact

\(L\) :

Spring physical unloaded length

\(L_{0}\) :

Spring compressed length

\(\Delta \) :

Deflection in the spring

\(F_\mathrm{nl}\) :

Springs exact nonlinear force

\(\tilde{F}_\mathrm{nl} \) :

Taylor approximation of \(F_\mathrm{nl}\)

\(m\) :

Nonlinear energy sink mass

\(k\) :

Transverse spring linear stiffness

\(k_\mathrm{nl}\) :

Spring geometric nonlinear stiffness

\(\lambda \) :

Nonlinear energy sink linear damping coefficient

\({\lambda }_\mathrm{p}\) :

Primary mass linear damping coefficient

References

  1. Vakakis, A.F., Gendelman, O.V., Kerschen, G., Bergman, L.A., McFarland, D.M., Lee, Y.S.: Nonlinear Targeted Energy Transfer in Mechanical and Structural Systems, I and II. Springer, Berlin (2008)

    Google Scholar 

  2. Gendelman, O., Manevitch, L.I., Vakakis, A.F., Closkey, R.M.: Energy pumping in nonlinear mechanical oscillators: part I—dynamics of the underlying Hamiltonian systems. J. Appl. Mech. 68(1), 34–41 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  3. Vakakis, A.F., Gendelman, O.: Energy pumping in nonlinear mechanical oscillators: part II—resonance capture. J. Appl. Mech. 68(1), 42–48 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  4. Lee, Y.S., Kerschen, G., Vakakis, A.F., Panagopoulos, P., Bergman, L., McFarland, D.M.: Complicated dynamics of a linear oscillator with a light, essentially nonlinear attachment. Phys. D 204(1–2), 41–69 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  5. Gourdon, E., Alexander, N.A., Taylor, C.A., Lamarque, C.H., Pernot, S.: Nonlinear energy pumping under transient forcing with strongly nonlinear coupling: theoretical and experimental results. J. Sound Vib. 300, 522–551 (2007)

    Article  Google Scholar 

  6. Quinn, D.D., Gendelman, O., Kerschen, G., Sapsis, T.P., Bergman, L.A., Vakakis, A.F.: Efficiency of targeted energy transfers in coupled nonlinear oscillators associated with 1:1 resonance capture: part I. J. Sound Vib. 311, 1228–1248 (2008)

    Article  Google Scholar 

  7. Sapsis, T.P., Vakakis, A.F., Gendelman, O.V., Bergman, L.A., Kerschen, G., Quinn, D.D.: Efficiency of targeted energy transfers in coupled nonlinear oscillators associated with 1:1 resonance captures: part II, analytical study. J. Sound Vib. 325, 297–320 (2009)

    Article  Google Scholar 

  8. McFarland, D.M., Bergman, L.A., Vakakis, A.F.: Experimental study of non-linear energy pumping occurring at a single fast frequency. Int. J. Non-Linear Mech. 40, 891–899 (2005)

    Article  MATH  Google Scholar 

  9. AL-Shudeifat, M.A.: Analytical formulas for the energy, velocity and displacement decays of purely nonlinear damped oscillators. J. Vib. Control. doi:10.1177/1077546313493817.

  10. Sapsis, T.P., Quinn, D.D., Vakakis, A.F., Bergman, L.A.: Effective stiffening and damping enhancement of structures with strongly nonlinear local attachments. J. Vib. Acoust. 134, 011016-1 (2012)

    Article  Google Scholar 

  11. Vakakis, A.F.: Shock isolation through the use of nonlinear energy sinks. J. Vib. Control 9, 79–93 (2003)

    Article  MATH  Google Scholar 

  12. Sigalov, G., Gendelman, O.V., AL-Shudeifat, M.A., Manevitch, L.I., Vakakis, A.F., Bergman, L.A.: Resonance captures and targeted energy transfers in an inertially coupled rotational nonlinear energy sink. Nonlinear Dyn. 69(4), 1693–1704 (2012)

    Google Scholar 

  13. Sigalov, G., Gendelman, O.V., AL-Shudeifat, M., Manevitch, L.I., Vakakis, A.F., Bergman, L.A.: Alternation of regular and chaotic dynamics in a simple two-degree-of-freedom system with nonlinear inertial coupling. Chaos 22(1), 013118 (2012)

    Article  Google Scholar 

  14. Gendelman, O.V., Sigalov, G., Manevitch, L.I., Mane, M., Vakakis, A.F., Bergman, L.A.: Dynamics of an eccentric rotational nonlinear energy sink. J. Appl. Mech. 79(1), 011012.1–011012.9 (2012)

    Article  Google Scholar 

  15. Nucera, F., Vakakis, A.F., McFarland, D.M., Bergman, L.A., Kerschen, G.: Targeted energy transfers in vibro-impact oscillators for seismic mitigation. Nonlinear Dyn. 50, 651–677 (2007)

    Google Scholar 

  16. Karayannis, I., Vakakis, A.F., Georgiades, F.: Vibro-impact attachments as shock absorbers. Proc. IMechE. J. Mech. Eng. Sci. 222(C), 1899–1908 (2008)

    Article  Google Scholar 

  17. Nucera, F., McFarland, D.M., Bergman, L.A., Vakakis, A.F.: Application of broadband nonlinear targeted energy transfers for seismic mitigation of a shear frame: I. Computational results. J. Sound Vib. 329(15), 2973–2994 (2010)

    Article  Google Scholar 

  18. Lee, Y.S., Nucera, F., Vakakis, A.F., McFarland, D.M., Bergman, L.A.: Periodic orbits, damped transitions and targeted energy transfers in oscillators with vibro-impact attachments. Phys. D 238(18), 1868–1896 (2009)

    Article  MATH  Google Scholar 

  19. Georgiadis, F., Vakakis, A.F., McFarland, D.M., Bergman, L.A.: Shock isolation through passive energy pumping caused by non-smooth nonlinearities. Int. J. Bifurcat. Chaos 15(6), 1–13 (2005)

    Article  Google Scholar 

  20. AL-Shudeifat, M.A., AL-Shudeifat, M.A., Wierschem, N., Quinn, D.D., Vakakis, A.F., Bergman, L.A., Spencer Jr, B.F.: Numerical and experimental investigation of a highly effective single-sided vibro-impact nonlinear energy sink for shock mitigation. Int. J. Non-Linear Mech. 52, 96–109 (2013)

    Article  Google Scholar 

  21. Wierschem, N., Luo, J., Hubbard, S., Fahnestock, L., Spencer, Jr, B., Vakakis, A., Bergman, L.: Experimental testing of a large 9-story structure equipped with multiple nonlinear energy sinks subjected to an impulsive loading. Structures congress, pp. 2241–2252 (2013).

  22. Quinn, D.D., Wierschem, N., Hubbard, S., AL-Shudeifat, M.A., Ott, R.J., McFarland, D.M., Vakakis, A.F., Bergman, L.A.: Equivalent modal damping, stiffening and energy exchanges in multi-degree-of-freedom systems with strongly nonlinear attachments. J. Multi-Body Dyn. 226(2), 122–146 (2012)

    Google Scholar 

  23. Wierschem, N., Quinn, D.D., Hubbard, S., AL-Shudeifat, M.A., McFarland, M., Luo, J., Fahnestock, L.A., Spencer Jr, B.F., Vakakis, A.F., Bergman, L.A.: Passive damping enhancement of a two-degree-of-freedom system through a strongly nonlinear two-degree-of-freedom attachment. J. Sound Vib. 331(25), 5393–5407 (2012)

    Article  Google Scholar 

  24. Jiang, X., McFarland, D.M., Vakakis, A.F.: Steady state passive nonlinear energy pumping in coupled oscillators: theoretical and experimental results. Nonlinear Dyn. 33, 87–102 (2003)

    Article  MATH  Google Scholar 

  25. Malatkar, P., Nayfeh, A.H.: Steady-state dynamics of a linear structure weakly coupled to an essentially nonlinear oscillator. Nonlinear Dyn. 47, 167–179 (2007)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad A. AL-Shudeifat.

Rights and permissions

Reprints and permissions

About this article

Cite this article

AL-Shudeifat, M.A. Highly efficient nonlinear energy sink. Nonlinear Dyn 76, 1905–1920 (2014). https://doi.org/10.1007/s11071-014-1256-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-014-1256-x

Keywords

Navigation