Skip to main content
Log in

Optimal harvesting of a two species competition model with imprecise biological parameters

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper a two competing species harvesting model with imprecise biological parameters has been developed. We have developed a method to handle these imprecise parameters and discuss the dynamical behaviour of the model. We have discussed the existence of various equilibrium points and stability of the system at these equilibrium points. Also the bionomic equilibrium of the harvesting model has been analysed. Next the equilibrium solution of the control problem has been derived, and then dynamical optimization of the harvest policy is carried out taking combined harvesting effort as a dynamic variable by invoking Pontryagin’s Maximum Principle. Our important analytical findings are illustrated through computer simulation using MATLAB followed by discussions and conclusions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Bassanezi, R.C., Barros, L.C., Tonelli, A.: Attractors nad asymptotic stability for fuzzy dynamical systems. Fuzzy Sets Syst. 113, 473–483 (2000)

    Article  MATH  Google Scholar 

  2. Bhattacharya, D.K., Begum, S.: Bionomic equilibrium of two species system. Math. Biosci. 135, 111–127 (1996)

    Article  MATH  Google Scholar 

  3. Chaudhuri, K.S.: Dynamic optimization of combined harvesting of two species fishery. Ecol. Model. 41, 17–25 (1988)

    Article  Google Scholar 

  4. Chaudhuri, K.S., Saha Roy, S.: On the combined harvesting of a prey–predator system. J. Biol. Syst. 4, 376–389 (1996)

    Article  Google Scholar 

  5. Chen, C., Hsui, C.: Fishery policy when considering the future opertunity of harvesting. Math. Biosci. 207, 138–160 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  6. Clark, C.W.: Bioeconomic Modelling and Fisheries Management. Wiley, New York (1985)

    Google Scholar 

  7. Clark, C.W.: Mathematical Bioeconomics: The Optimal Management of Renewable Resources. Wiley, New York (1990)

    MATH  Google Scholar 

  8. Das, T., Mukherjee, R.N., Chaudhuri, K.S.: Harvesting of a prey–predator fishery in the presense of toxicity. Appl. Math. Model. 33, 2282–2292 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  9. Erbe, L.H., Rao, V.S.H., Freedman, H.I.: Three-species food chain models with mutual interference and time delays. Math. Biosci. 80, 57–80 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  10. Freedman, H.I., Waltman, P.: Mathematical analysis of some three-species food chain models. Math. Biosci. 33, 257–276 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  11. Freedman, H.I., Waltman, P.: Persistence in a model of three competitive populations. Math. Biosci. 73, 89–101 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  12. Freedman, H.I., Waltman, P.: Persistence in a model of three interacting predator–prey populations. Math. Biosci. 68, 213–231 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  13. Gilpin, M.E.: Enriched predator–prey systems: theoretical stability. Science 177, 902–904 (1972)

    Article  Google Scholar 

  14. Goh, B.S.: Management and Analysis of Biological Populations. Elsevier, Amsterdam (1980)

    Google Scholar 

  15. Guo, M., Xu, X., Li, R.: Impulsive functional differential inclusions and fuzzy population models. Fuzzy Sets Syst. 138, 601–615 (2003)

    Article  MATH  Google Scholar 

  16. Hannesson, R.: Optimal harvesting of ecologically interdependent fish species. J. Environ. Econ. Manag. 10, 329–345 (1983)

    Article  Google Scholar 

  17. Kot, M.: Elements of Mathematical Ecology. Cambridge University Press, Cambridge (2001)

    Book  Google Scholar 

  18. Kumar, R., Freedman, H.I.: A mathematical model of facultative mutualism with populations interacting in a food chain. Math. Biosci. 97, 235–261 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  19. Kuznetsov, Y., Rinaldi, S.: Remarks on food chain dynamics. Math. Biosci. 134, 1–33 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  20. Leitmann, G.: An Introduction to Optimal Control. McGraw Hill, New York (1966)

    MATH  Google Scholar 

  21. Levins, R.: The strategy of model building in population bilogy. Am. Sci. 54(4), 421–431 (1966)

    Google Scholar 

  22. Li, B., Kuang, Y.: Simple food chain in a chemostat with distinct removal rates. J. Math. Anal. Appl. 242, 75–92 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  23. Li, L., Jin, Z.: Pattern dynamics of a spatial predatorprey model with noise. Nonlinear Dyn. 67, 1737–1744 (2012)

    Article  MathSciNet  Google Scholar 

  24. Li, W., Wang, K.: Optimal harvesting policy for general stochastic logistic population model. J. Math. Anal. Appl. 368, 420–428 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  25. Li, W., Wang, K., Su, H.: Optimal harvesting policy for stochastic logistic population model. Appl. Math. Comput. 218, 157–162 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  26. Liu, P.P., Xue, Y.: Spatiotemporal dynamics of a predatorprey model. Nonlinear Dyn. 69, 71–77 (2012)

    Article  MathSciNet  Google Scholar 

  27. Lotka, A.J.: Elements of Physical Biology. The Williams and Wilkins Co., Baltimore (1925)

    MATH  Google Scholar 

  28. Lv, Y., Yuan, R., Pei, Y.: Dynamics in two nonsmooth predatorprey models with threshold harvesting. Nonlinear Dyn. 74, 107–132 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  29. Malthus, T.R.: An essay on the principle of population, as it affects the future improvement of society, with remarks on the speculations of Mr. Godwin, M. Condorcet and other writers. J. Johnson, London, 1798. Reprint, University of Michigan Press, USA (1959)

  30. Maiti, A., Pal, A.K., Samanta, G.P.: Effect of time delay on a food chain model. Appl. Math. Comput. 200, 189–203 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  31. Maiti, A., Samanta, G.P.: Complex dynamics of a food chain model with mixed selection of functional responses. Bull. Cal. Math. Soc. 97, 393–412 (2005)

    MATH  MathSciNet  Google Scholar 

  32. Maiti, A., Samanta, G.P.: Deterministic and stochastic analysis of a prey-dependent predator–prey system. Int. J. Math. Educ. Sci. Technol. 36, 65–83 (2006)

    Article  MathSciNet  Google Scholar 

  33. Mesterton-Gibbons, M.: On the optimal policy for comboned harvesting of independent species. Nat. Resour. Model. 2, 109–134 (1987)

    MathSciNet  Google Scholar 

  34. Mesterton-Gibbons, M.: On the optimal policy for comboned harvesting of predator and prey. Nat. Resour. Model. 3, 63–90 (1988)

    MathSciNet  Google Scholar 

  35. Murray, J.D.: Mathematical Biology. Springer, New York (1993)

  36. Pal, D., Mahaptra, G.S., Samanta, G.P.: Optimal harvesting of prey-predator system with interval biological parameters: a bioeconomic model. Math. Biosci. 241, 181–187 (2013)

    Google Scholar 

  37. Palma, A.R., Olivares, E.G.: Optimal harvesting in a predator–prey model with Allee effect and sigmoid functional response. Appl. Math. Model. 36, 1864–1874 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  38. Peixoto, M., Barros, L.C., Bazzanezi, R.C.: Predator–prey fuzzy model. Ecol. Model. 214, 39–44 (2008)

    Article  Google Scholar 

  39. Pontryagin, L.S., Boltyonsku, V.G., Gamkrelidre, R.V., Mishchenko, E.F.: The Mathematical Theory of Optimal Process. Wiley, New York (1962)

    Google Scholar 

  40. Ragogin, D.L., Brown, G.: Harvest polices and non-market valuation in a predator prey system. J. Environ. Econ. Manag. 12, 155–168 (1985)

    Article  Google Scholar 

  41. Rebaza, J.: Dynamics of prey threshold harvesting and refuge. J. Comput. Appl. Math. 236, 1743–1752 (2012)

    Google Scholar 

  42. Ruan, S., Xiao, D.: Global analysis in a predator-prey system with nonmonotonic functional response. SIAM J. Appl. Math. 61, 1445–1472 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  43. Samanta, G.P., Manna, D., Maiti, A.: A bioeconomic modelling of a three species fishery with switching effect. J. Appl. Math. Comput. 12, 219–232 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  44. Sharma, S., Samanta, G.P.: Dynamical behaviour of a two prey one predator system. Differ. Equ. Dyn. Syst. (2013). doi:10.1007/s 12591-012-0158-y

  45. Srinivasu, P.D.N., Prasad, B.S.R.V., Venkatesulu, M.: Biological control through provision of additional food to predator: a theoretical study. Theor. Popul. Biol. 72, 111–120 (2007)

    Article  MATH  Google Scholar 

  46. Takeuchi, Y., Oshime, Y., Matsuda, H.: Persistence and periodic orbits of a three-competitor model with refuges. Math. Biosci. 108, 105–125 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  47. Verhulst, P.F.: Notice sur la loi que la population persuit dans son accroissement. Corr. Math. Phys. 10, 113–121 (1838)

    Google Scholar 

  48. Volterra, V.: Variazioni e fluttuazioni del numers di individui in specie animali conviventi. Mem. Accd. Lineii Roma. 2, 31–113 (1926)

    Google Scholar 

  49. Wilen, J., Brown, G.: Optimal recovery paths for perturbations of trophic level bioeconomic systems. J. Environ. Econ. Manage. 13, 225–234 (1986)

    Article  MATH  Google Scholar 

  50. Yedavalli, R.K., Devarakonda, N.: Robust stability and control of linear interval parameter systems using quantitative (state space) and qualitative (ecological) perspectives. In: Bartoszewicz A (ed.) Robust Control, Theory and Applications. InTech, Rijeka, Croatia (2011)

  51. Zhang, G., Shen, Y., Chen, B.: Hopf bifurcation of a predatorprey system with predator harvesting and two delays. Nonlinear Dyn. 73, 2119–2131 (2013)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

We are grateful to the anonymous referees and the Editor for their careful reading, valuable comments and helpful suggestions which have helped us to improve the presentation of this work significantly.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. P. Samanta.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sharma, S., Samanta, G.P. Optimal harvesting of a two species competition model with imprecise biological parameters. Nonlinear Dyn 77, 1101–1119 (2014). https://doi.org/10.1007/s11071-014-1354-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-014-1354-9

Keywords

Navigation