Skip to main content
Log in

Primary resonance of fractional-order van der Pol oscillator

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper the primary resonance of van der Pol (VDP) oscillator with fractional-order derivative is studied analytically and numerically. At first the approximately analytical solution is obtained by the averaging method, and it is found that the fractional-order derivative could affect the dynamical properties of VDP oscillator, which is characterized by the equivalent damping coefficient and the equivalent stiffness coefficient. Moreover, the amplitude–frequency equation for steady-state solution is established, and the corresponding stability condition is also presented based on Lyapunov theory. Then, the comparisons of several different amplitude–frequency curves by the approximately analytical solution and the numerical integration are fulfilled, and the results certify the correctness and satisfactory precision of the approximately analytical solution. At last, the effects of the two fractional parameters, i.e., the fractional coefficient and the fractional order, on the amplitude–frequency curves are investigated for some typical excitation amplitudes, which are different from the traditional integer-order VDP oscillator.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Petras, I.: Fractional-Order Nonlinear Systems: Modeling, Analysis and Simulation. Higher Education Press, Beijing (2011)

    Book  Google Scholar 

  2. Podlubny, I.: Fractional Differential Equations. Academic, London (1998)

    Google Scholar 

  3. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam (2006)

    MATH  Google Scholar 

  4. Das, S.: Functional Fractional Calculus for System Identification and Controls. Springer, Berlin (2008)

    MATH  Google Scholar 

  5. Monje, C.A., Chen, Y.Q., Vinagre, B.M., Xue, D.Y., Feliu, V.: Fractional-Order Systems and Controls: Fundamentals and Applications. Springer, London (2010)

  6. Caponetto, R., Dongola, G., Fortuna, L., Petras, I.: Fractional Order Systems: Modeling and Control Applications. World Scientific, New Jersey (2010)

    Google Scholar 

  7. Rossikhin, Y.A., Shitikova, M.V.: Application of fractional calculus for dynamic problems of solid mechanics: novel trends and recent results. Appl. Mech. Rev. 63, 010801-1–010801-52 (2010)

    Google Scholar 

  8. Yang, S., Shen, Y.: Recent advances in dynamics and control of hysteretic nonlinear systems. Chaos Soliton Fract. 40, 1808–1822 (2009)

    Article  Google Scholar 

  9. Machado, J.A.T., Kiryakova, V., Mainardi, F.: Recent history of fractional calculus. Commun. Nonlinear Sci. Numer. Simul. 16, 1140–1153 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  10. Machado, J.A.T., Galhano, A.M.S.: Fractional dynamics: a statistical perspective. ASME J. Comput. Nonlinear Dyn. 3(2), 021201-1-1-5 (2008)

    Google Scholar 

  11. Li, G., Zhu, Z., Cheng, C.: Dynamical stability of viscoelastic column with fractional derivative constitutive relation. Appl. Math. Mech. 22(3), 294–303 (2001)

    Article  MATH  Google Scholar 

  12. Wang, Z., Du, M.: Asymptotical behavior of the solution of a SDOF linear fractionally damped vibration system. Shock Vib. 18, 257–268 (2011)

    Article  MathSciNet  Google Scholar 

  13. Wang, Z., Hu, H.: Stability of a linear oscillator with damping force of fractional order derivative. Sci. Chin Phys. Mech. Astron. 53(2), 345–352 (2010)

    Article  Google Scholar 

  14. Pinto, C.M.A., Machado, J.A.T.: Complex-order forced van der Pol oscillator. J. Vib. Control. 18(14), 2201–2209 (2012)

    Article  MathSciNet  Google Scholar 

  15. Pinto, C.M., Machado, J.T.: Complex-order van der Pol oscillator. Nonlinear Dyn. 65(3), 247–254 (2011)

    Article  Google Scholar 

  16. Rossikhin, Y.A., Shitikova, M.V.: Application of fractional derivatives to the analysis of damped vibrations of viscoelastic single mass systems. Acta Mech. 120, 109–125 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  17. Tavazoei, M.S., Haeri, M., Attari, M., Bolouki, S., Siami, M.: More details on analysis of fractional-order van der Pol oscillator. J. Vib. Control. 15(6), 803–819 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  18. Atanackovic, T.M., Stankovic, B.: On a numerical scheme for solving differential equations of fractional order. Mech. Res. Commun. 35, 429–438 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  19. Cao, J., Ma, C., Xie, H., Jiang, Z.: Nonlinear dynamics of Duffing system with fractional order damping. ASME J .Comput. Nonlinear Dyn. 5: 041012-1-2-6 (2010)

    Google Scholar 

  20. Sheu, L.J., Chen, H.K., Chen, J.H., Tam, L.M.: Chaotic dynamics of the fractionally damped Duffing equation. Chaos Soliton Fract. 32, 1459–1468 (2007)

    Article  MATH  Google Scholar 

  21. Chen, J.H., Chen, W.C.: Chaotic dynamics of the fractionally damped van der Pol equation. Chaos Soliton Fract. 35, 188–198 (2008)

    Article  Google Scholar 

  22. Lu, J.: Chaotic dynamics of the fractional-order Lü system and its synchronization. Phys. Lett. A. 354, 305–311 (2006)

    Article  Google Scholar 

  23. Chen, L., Zhu, W.: The first passage failure of SDOF strongly nonlinear stochastic system with fractional derivative damping. J. Vib. Control. 15(8), 1247–1266 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  24. Qi, H., Xu, M.: Unsteady flow of viscoelastic fluid with fractional Maxwell model in a channel. Mech. Res. Commun. 34, 210–212 (2007)

    Article  MATH  Google Scholar 

  25. Wahi, P., Chatterjee, A.: Averaging oscillations with small fractional damping and delayed terms. Nonlinear Dyn. 38, 3–22 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  26. Wu, X., Lu, H., Shen, S.: Synchronization of a new fractional-order hyperchaotic system. Phys. Lett. A 373, 2329–2337 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  27. Padovan, J., Sawicki, J.T.: Nonlinear vibrations of fractionally damped systems. Nonlinear Dyn. 16, 321–336 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  28. Huang, Z., Jin, X.: Response and stability of a SDOF strongly nonlinear stochastic system with light damping modeled by a fractional derivative. J. Sound Vib. 319, 1121–1135 (2009)

    Article  Google Scholar 

  29. Borowiec, M., Litak, G., Syta, A.: Vibration of the Duffing oscillator: effect of fractional damping. Shock Vib. 14, 29–36 (2007)

    Article  Google Scholar 

  30. Shen, Y.J., Yang, S.P., Xing, HJ.: Dynamical analysis of linear single degree-of-freedom oscillator with fractional-order derivative. Acta Phys. Sinica 61(11), 110505-1-6.(2012)

    Google Scholar 

  31. Shen, Y.J., Yang, S.P., Xing, H.J.: Dynamical analysis of linear single degree-of-freedom oscillator with fractional-order derivative (II). Acta Phys. Sinica 61(15), 150503-1-9 (2012)

    Google Scholar 

  32. Shen, Y.J., Yang, S.P., Xing, H.J., Gao, G.S.: Primary resonance of Duffing oscillator with fractional-order derivative. Commun. Nonlinear Sci. Numer. Simul. 17(7), 3092–3100 (2012)

    Google Scholar 

  33. Shen, Y.J., Yang, S.P., Xing, H.J., Ma, H.X.: Primary resonance of Duffing oscillator with two kinds of fractional-order derivatives. Int. J. Non-Linear Mech. 47(9), 975–983 (2012)

    Article  Google Scholar 

  34. Nayfeh, A.H., Mook, D.T.: Nonlinear oscillations. John Wiley, New York (1979)

    MATH  Google Scholar 

  35. Leung, A.Y.T., Yang, H.X., Guo, Z.J.: The residue harmonic balance for fractional order van der Pol like oscillators. J. Sound Vib. 331, 1115–1126 (2012)

    Google Scholar 

  36. Sardar, T., Ray, S.S., Bera, R.K., Biswas, B.B.: The analytical approximate solution of the multi-term fractionally damped van der Pol equation. Phys. Scr. 80, 025003-1-6 (2009)

    Google Scholar 

  37. Xie, F., Lin, X.Y.: Asymptotic solution of the van der Pol oscillator with small fractional damping. Phys. Scr. 136, 014033-1-4 (2009)

    Google Scholar 

Download references

Acknowledgments

The authors are grateful to the support by the National Natural Science Foundation of China (No. 11072158 and 11372198), the Program for New Century Excellent Talents in University (NCET-11-0936), and the Cultivation Plan for Innovation Team and Leading Talent in Colleges and Universities of Hebei Province (LJRC018).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong-Jun Shen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, YJ., Wei, P. & Yang, SP. Primary resonance of fractional-order van der Pol oscillator. Nonlinear Dyn 77, 1629–1642 (2014). https://doi.org/10.1007/s11071-014-1405-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-014-1405-2

Keywords

Navigation