Skip to main content

Advertisement

Log in

Second-order sliding-mode controller for autonomous underwater vehicle in the presence of unknown disturbances

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

We propose the use of a second-order sliding-mode controller (2-SMC) to stabilize an autonomous underwater vehicle (AUV) which is subject to modeling errors and often suffers from unknown environmental disturbances. The 2-SMC is effective in compensating for the uncertainties in the hydrodynamic and hydrostatic parameters of the vehicle and rejecting the unpredictable disturbance effects due to ocean waves, tides, and currents. The 2-SMC is comprised of an equivalent controller and a switching controller to suppress the parameter uncertainties and external disturbances, and its closed-loop system is exponentially stable in the presence of parameter uncertainties and unknown disturbances. We performed numerical simulations to validate the proposed control approach, and experimental tests using Cyclops AUV were conducted to demonstrate its practical feasibility. The proposed controller increased the accuracy of trajectory tracking for an AUV in the presence of uncertain hydrodynamics and unknown disturbances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Jarving, B.: The NDRE-AUV flight control system. IEEE J. Ocean. Eng. 19(4), 497–501 (1994)

    Article  Google Scholar 

  2. Healey, A.J., Lienard, D.: Multivariable sliding mode control for autonomous diving and steering of unmanned underwater vehicles. IEEE J. Ocean. Eng. 18(3), 327–339 (1993)

    Article  Google Scholar 

  3. Herman, P.: Decoupled PD set-point controller for underwater vehicles. Ocean Eng. 36(6), 529–534 (2009)

    Article  Google Scholar 

  4. Kim, M., Joe, H., Pyo, J., et al.: Variable-structure PID controller with Anti-windup for Autonomous underwater vehicle. OCEANS-San diego, 2013 MTS/IEEE

  5. Yoerger, D., Slotine, J.: Robust trajectory control of underwater vehicles. IEEE J. Ocean. Eng. 10(4), 462–470 (1985)

    Article  Google Scholar 

  6. Bartolini, G., Punta, E.: Second order sliding mode tracking control of underwater vehicles. In American Control Conference, 2000. Proceedings of the 2000; 1(6): 65–69

  7. Salgado-Jimenez, T., Jouvencel, B.: Using a high order sliding modes for diving control a torpedo autonomous underwater vehicle. In OCEANS 2003. Proceedings, 2, pp. 934–939.

  8. Pisano, A., Usai, E.: Output-feedback control of an underwater vehicle prototype by higher-order sliding modes. Automatica 40(9), 1525–1531 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  9. Roche, E., Sename, O., Simon, D.: LPV/\(H_\infty \) control of an autonomous underwater vehicle (AUV). In: Proceedings of the European Control Conference 2009; Budapest, Hungary

  10. Feng, Z.P., Allen, R.: \(H_\infty \) autopilot design for autonomous underwater vehicles. J. Shanghai Jiaotong Univ. (Science) 15(2), 194–198 (2010)

    Article  Google Scholar 

  11. Petrich, J., Stilwell, D.J.: Robust control for an autonomous underwater vehicle that suppresses pitch and yaw coupling. Ocean Eng. 38(1), 197–204 (2011)

    Article  Google Scholar 

  12. Sun, B., Zhu, D., Li, W.: An integrated backstepping and sliding mode tracking control algorithm for unmanned underwater vehicles. In Conference on Control (CONTROL), 2012 UKACC International

  13. Zhu, D., Sun, B.: The bio-inspired model based hybrid sliding-mode tracking control for unmanned underwater vehicles. Eng. Appl. Artif. Intell. 26(10), 2260–2269 (2013)

    Article  Google Scholar 

  14. Caccia, M., Veruggio, G.: Guidance and control of a reconfigurable unmanned underwater vehicle. Control Eng. Pract. 8(1), 21–37 (2000)

    Article  Google Scholar 

  15. Slotine, J.J.E., Li, W.: Applied Nonlinear Control. Prentice Hall, Upper Saddle River (1991)

    MATH  Google Scholar 

  16. Utkin, V.I.: Sliding mode control design principles and applications to electric drives. IEEE Trans. Ind. Electron. 40(1), 23–36 (1993)

    Article  Google Scholar 

  17. Polyakov, A., Poznyak, A.: Lyapunov function design for finite-time convergence analysis: twisting controller for second-order sliding mode realization. Automatica 45, 444–448 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  18. Eker, I.: Second-order sliding mode control with experimental application. ISA trans. 49, 394–405 (2010)

    Article  Google Scholar 

  19. Chen, H., Sun, W.J., Sun, Z.D., Yeow, J.T.W.: Second-order sliding mode control of a 2D torsional MEMS micromirror with sidewall electrodes. J. Micromech. Microeng. 23, 1–9 (2013)

    MATH  Google Scholar 

  20. Lu, L., Yu, M., Luan, L.: Synchronization between uncertain chaotic systems with a diverse structure based on a second-order sliding mode control. Nonlinear Dyn. 70(3), 1861–1865 (2012)

    Article  MathSciNet  Google Scholar 

  21. Lu, L., Yu, M., Li, C., Liu, S., Yan, B., Chang, H., Zhao, J., Liu, Y.: Projective synchronization of a class of complex network based on high-order sliding mode control. Nonlinear Dyn. 73, 1–6 (2013)

    Article  Google Scholar 

  22. Bi, F.Y., Wei, Y.J., Zhang, J.Z., et al.: Position-tracking control of underactuated autonomous underwater vehicles in the presence of unknown ocean currents. IET Control Theory Appl. 4(11), 2369–2380 (2010)

    Article  MathSciNet  Google Scholar 

  23. Tong, S., Li, H.X.: Fuzzy adaptive sliding-mode control for MIMO nonlinear systems. IEEE Trans. Fuzzy Syst. 11(3), 354–360 (2003)

    Article  Google Scholar 

  24. Li, H.X., Tong, S.: A hybrid adaptive fuzzy control for a class of nonlinear MIMO systems. IEEE Trans. Fuzzy Syst. 11(1), 24–34 (2003)

    Article  Google Scholar 

  25. Li, Y., Tong, S., Li, T.: Adaptive fuzzy output feedback control for a single-link flexible robot manipulator driven DC motor via backstepping. Nonlinear Anal. 14(1), 483–494 (2013)

  26. Khalil, H.K., Grizzle, J.W.: Nonlinear Systems, vol. 3. Prentice Hall, Upper Saddle River (2002)

    MATH  Google Scholar 

Download references

Acknowledgments

This research was supported by the Civil Military Technology Cooperation Center, Korea and Gyeonbuk Seagrant Program funded by the Ministry of Oceans and Fisheries, Korea and the Ministry of Science, ICT and Future Planning, Korea, under the IT Consilience Creative Program (NIPA- 2014-H0201-14-1001) supervised by the National IT Industry Promotion Agency.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Son-cheol Yu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Joe, H., Kim, M. & Yu, Sc. Second-order sliding-mode controller for autonomous underwater vehicle in the presence of unknown disturbances. Nonlinear Dyn 78, 183–196 (2014). https://doi.org/10.1007/s11071-014-1431-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-014-1431-0

Keywords

Navigation