Skip to main content

Advertisement

Log in

Stability and Hopf bifurcation analysis for an energy resource system

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper investigates the dynamical behaviors for a four-dimensional energy resource system with time delay, especially in terms of equilibria analyses and Hopf bifurcation analysis. By setting the time delay as a bifurcation parameter, it is shown that Hopf bifurcation would occur when the time delay exceeds a sequence of critical values. Furthermore, the stability and direction of the Hopf bifurcation are determined via the normal form theory and the center manifold reduction theorem. Numerical examples are given in the end of the paper to verify the theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Luderer, G., Bosetti, V., Jakob, M., Leimbach, M., Steckel, J.C., Waisman, H., Edenhofer, O.: The economics of decarbonizing the energy systemresults and insights from the recipe model intercomparison. Clim. Change 114(1), 9–37 (2012)

    Article  Google Scholar 

  2. Lund, H., Andersen, A.N., Østergaard, P.A., Mathiesen, B.V., Connolly, D.: From electricity smart grids to smart energy systems-A market operation based approach and understanding. Energy 42(1), 96–102 (2012)

    Article  Google Scholar 

  3. Guttromson, R.T.: Modeling distributed energy resource dynamics on the transmission system. IEEE Trans. Power Syst. 17(4), 1148–1153 (2002)

    Article  Google Scholar 

  4. Sun, M., Tian, T., Xu, J.: Time-delayed feedback control of the energy resource chaotic system. Int. J. Nonlinear Sci. 1(3), 172–177 (2006)

    MathSciNet  Google Scholar 

  5. Sun, M., Tian, L., Zeng, Z.: The energy resources system with parametric perturbations and its hyperchaos control. Nonlinear Anal. 10(4), 2620–2626 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  6. Sun, M., Tian, L., Fu, Y.: An energy resources demand-supply system and its dynamical analysis. Chaos Solitons Fractals 32(1), 168–180 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  7. Sun, M., Jia, Q., Tian, L.: A new four-dimensional energy resources system and its linear feedback control. Chaos Solitons Fractals 39(1), 101–108 (2009)

    Article  MATH  Google Scholar 

  8. Sun, M., Tian, L., Fu, Y., Qian, W.: Dynamics and adaptive synchronization of the energy resource system. Chaos Solitons Fractals 31(4), 879–888 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  9. Sun, M., Tian, L., Jia, Q.: Adaptive control and synchronization of a four-dimensional energy resources system with unknown parameters. Chaos Solitons Fractals 39(4), 1943–1949 (2009)

    Article  MATH  Google Scholar 

  10. Shi, X., Wang, Z.: Robust chaos synchronization of four-dimensional energy resource system via adaptive feedback control. Nonlinear Dyn. 60(4), 631–637 (2010)

    Article  MATH  Google Scholar 

  11. Huang, C.-F., Cheng, K.-H., Yan, J.-J.: Robust chaos synchronization of four-dimensional energy resource systems subject to unmatched uncertainties. Commun. Nonlinear Sci. Numer. Simul. 14(6), 2784–2792 (2009)

    Article  Google Scholar 

  12. Wang, Z., Shi, X.: Synchronization of a four-dimensional energy resource system via linear control. Commun. Nonlinear Sci. Numer. Simul. 16(1), 463–474 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  13. Xin, B., Chen, T., Liu, Y.: Projective synchronization of chaotic fractional-order energy resources demand-supply systems via linear control. Commun. Nonlinear Sci. Numer. Simul. 16(11), 4479–4486 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  14. Wang, Z.: Chaos synchronization of an energy resource system based on linear control. Nonlinear Anal. 11(5), 3336–3343 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  15. Fang, G., Tian, L., Sun, M., Fu, M.: Analysis and application of a novel three-dimensional energy-saving and emission–reduction dynamic evolution system. Energy 40(1), 291–299 (2012)

    Article  Google Scholar 

  16. Fang, G., Tian, L., Fu, M., Sun, M.: The impacts of carbon tax on energy intensity and economic growth—a dynamic evolution analysis on the case of china. Appl. Energy 110, 17–28 (2013)

    Article  Google Scholar 

  17. Sanchirico, J.N., Wilen, J.E.: Optimal spatial management of renewable resources: matching policy scope to ecosystem scale. J. Environ. Econ. Manag. 50, 23–46 (2005)

    Article  MATH  Google Scholar 

  18. Singh, C., Lago-Gonzalez, A.: Improved algorithms for multi-area reliability evaluation using the decomposition-simulation approach. IEEE Trans. Power Syst. 4, 321C328 (1989)

    Google Scholar 

  19. Pal, K., Pandit, M., Srivastava, L.: Joint energy and reserve dispatch in a multi-area competitive market using time-varying differential evolution. Int. J. Eng. Sci. Technol. 3(1), 87–108 (2001)

    Google Scholar 

  20. Chen, C.-L., Chen, Z.-Y., Lee, T.-Y.: Multi-area economic generation and reserve dispatch considering large-scale integration of wind power. Int. J. Electr. Power Energy Syst. 55, 171–178 (2014)

    Article  Google Scholar 

  21. Bianca, C., Ferrara, M., Guerrini, L.: Hopf bifurcations in a delayed-energy-based model of capital accumulation. Appl. Math. Inf. Sci. 7(1), 139–143 (2013)

    Article  MathSciNet  Google Scholar 

  22. Shayer, L.P., Campbell, S.A.: Stability, bifurcation, and multistability in a system of two coupled neurons with multiple time delays. SIAM J. Appl. Math. 61(2), 673–700 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  23. Wei, J., Zhang, C.: Bifurcation analysis of a class of neural networks with delays. Nonlinear Anal. 9(5), 2234–2252 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  24. Kacha, A., Hbid, M.L., Auger, P.: Stability and Hopf bifurcation of a mathematical model describing bacteria-fish interaction in marine environment. Appl. Math. Comput. 218(17), 8226–8241 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  25. Wang, R., Xiao, D.: Bifurcations and chaotic dynamics in a 4-dimensional competitive lotka-volterra system. Nonlinear Dyn. 59(3), 411–422 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  26. Ncube, I.: Stability switching and Hopf bifurcation in a multiple-delayed neural network with distributed delay. J. Math. Anal. Appl. 407(1), 141–146 (2013)

    Article  MathSciNet  Google Scholar 

  27. Cao, J., Jiang, H.: Hopf bifurcation analysis for a model of single genetic negative feedback autoregulatory system with delay. Neurocomputing 99, 381–389 (2013)

    Article  Google Scholar 

  28. Wei, J., Ruan, S.: Stability and bifurcation in a neural network model with two delays. Phys. D 130(3), 255–272 (1999)

  29. Xiao, M., Cao, J.: Delayed feedback-based bifurcation control in an internet congestion model. J. Math. Anal. Appl. 332(2), 1010–1027 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  30. Su, Y., Wei, J., Shi, J.: Hopf bifurcations in a reaction-diffusion population model with delay effect. J. Differ. Equ. 247(4), 1156–1184 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  31. Misra, O.P., Sinha, P., Singh, C.: Stability and bifurcation analysis of a prey-predator model with age based predation. Appl. Math. Model. 37(49), 6519–6529 (2013)

    Article  MathSciNet  Google Scholar 

  32. Song, Y., Han, Y., Peng, Y.: Stability and Hopf bifurcation in an unidirectional ring of \(n\) neurons with distributed delays. Neurocomputing 121, 442–452 (2013)

    Article  Google Scholar 

  33. Chen, S., Shi, J.: Stability and Hopf bifurcation in a diffusive logistic population model with nonlocal delay effect. J. Differ. Equ. 253(12), 3440–3470 (2012)

  34. Cao, J., Xiao, M.: Stability and Hopf bifurcation in a simplified BAM neural network with two time delays. IEEE Trans. Neural Netw. 18(2), 416–430 (2007)

    Article  MathSciNet  Google Scholar 

  35. Yang, R., Peng, Y., Song, Y.: Stability and Hopf bifurcation in an inverted pendulum with delayed feedback control. Nonlinear Dyn. 73(1–2), 737–749 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  36. Xiao, M., Zheng, W.X., Cao, J.: Hopf bifurcation of an (n+1)-neuron bidirectional associative memory neural network model with delays. IEEE Trans. Neural Netw. Learn. Syst. 24(1), 118–132 (2013)

    Article  Google Scholar 

  37. Nazari, M., Butcher, E.A.: Analysis of stability and Hopf bifurcation of delayed feedback spin stabilization of a rigid spacecraft. Nonlinear Dyn. (2013). doi:10.1007/s11071-013-1006-5, 17 pp

  38. Ruan, S., Wei, J.: On the zeros of transcendental functions with applications to stability of delay differential equations with two delays. Dyn. Contin. Discret. Impuls. Syst. Ser. A 10, 863–874 (2003)

    MathSciNet  MATH  Google Scholar 

  39. Song, Y., Han, M., Wei, J.: Stability and Hopf bifurcation analysis on a simplified BAM neural network with delays. Phys. D 200(3), 185–204 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  40. Hassard, B.D., Kazarinoff, N.D., Wan, Y.H.: Theory and Applications of Hopf Bifurcation. Cambridge University Press, Cambridge (1981)

    MATH  Google Scholar 

  41. Yu, W., Cao, J.: Hopf bifurcation and stability of periodic solutions for van der pol equation with time delay. Nonlinear Anal. 62(1), 141–165 (2005)

  42. Palensky, P., Dietrich, D.: Demand side management: demand response, intelligent energy systems, and smart loads. IEEE Trans. Ind. Inform. 7(3), 381–388 (2011)

  43. Cecati, C., Citro, C., Siano, P.: Combined operations of renewable energy systems and responsive demand in a smart grid. IEEE Trans. Sustain. Energy 2(4), 468–476 (2011)

    Article  Google Scholar 

  44. Xu, Y., Zhang, W., Liu, W., Wang, X., Ferrese, F., Zang, C., Yu, H.: Distributed subgradient-based coordination of multiple renewable generators in a microgrid. Trans. Power Syst. 29(1), 23–33 (2014)

    Article  Google Scholar 

Download references

Acknowledgments

This work was jointly supported by the State Grid Corporation of China (DZN1720130019), the National Natural Science Foundation of China under grant 61272530 and 11072059, the Natural Science Foundation of Jiangsu Province of China under Grant BK2012741, and the Specialized Research Fund for the Doctoral Program of Higher Education under Grant 20110092110017 and 20130092110017. The authors would like to give thanks to the anonymous reviewers and the handling editor for their valuable comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinde Cao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, J., Cao, J. & Hayat, T. Stability and Hopf bifurcation analysis for an energy resource system. Nonlinear Dyn 78, 219–234 (2014). https://doi.org/10.1007/s11071-014-1434-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-014-1434-x

Keywords

Navigation