Skip to main content
Log in

Using Fourier differential quadrature method to analyze transverse nonlinear vibrations of an axially accelerating viscoelastic beam

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper, a Fourier expansion-based differential quadrature (FDQ) method is developed to analyze numerically the transverse nonlinear vibrations of an axially accelerating viscoelastic beam. The partial differential nonlinear governing equation is discretized in space region and in time domain using FDQ and Runge–Kutta–Fehlberg methods, respectively. The accuracy of the proposed method is represented by two numerical examples. The nonlinear dynamical behaviors, such as the bifurcations and chaotic motions of the axially accelerating viscoelastic beam, are investigated using the bifurcation diagrams, Lyapunov exponents, Poincare maps, and three-dimensional phase portraits. The bifurcation diagrams for the in-plane responses to the mean axial velocity, the amplitude of velocity fluctuation, and the frequency of velocity fluctuation are, respectively, presented when other parameters are fixed. The Lyapunov exponents are calculated to further identify the existence of the periodic and chaotic motions in the transverse nonlinear vibrations of the axially accelerating viscoelastic beam. The conclusion is drawn from numerical simulation results that the FDQ method is a simple and efficient method for the analysis of the nonlinear dynamics of the axially accelerating viscoelastic beam.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Bellman, R., Kashef, B.G., Casti, J.: Differential quadrature: a technique for the rapid solution of nonlinear partial differential equations. J. Comput. Phys. 10, 40–52 (1972)

    Article  MATH  MathSciNet  Google Scholar 

  2. Bert, C.W., Jang, S.K., Striz, A.G.: Two new approximate methods for analyzing free vibration of structural components. AIAA J. 26, 612–618 (1988)

    Article  MATH  Google Scholar 

  3. Bert, C.W., Jang, S.K., Striz, G.: Nonlinear bending analysis of orthotropic rectangular plates by the method of differential quadrature. Comput. Mech. 5, 217–226 (1989)

    Article  MATH  Google Scholar 

  4. Wang, X., Striz, A.G., Bert, C.W.: Buckling and vibration analysis of skew plates by the DQ method. AIAA J. 32, 886–889 (1994)

    Article  Google Scholar 

  5. Malekzadeh, P., Karami, G.: Differential quadrature nonlinear analysis of skew composite plates based on FSDT. Eng. Struct. 28, 1307–1318 (2006)

    Article  Google Scholar 

  6. Alibeigloo, A., Madoliat, R.: Static analysis of cross-ply laminated plates with integrated surface piezoelectric layers using differential quadrature. Compos. Struct. 88, 342–353 (2009)

    Article  Google Scholar 

  7. Matbuly, M.S., Ragb, O., Nassar, M.: Natural frequencies of a functionally graded cracked beam using the differential quadrature method. Appl. Math. Comput. 215, 2307–2316 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  8. Alibeigloo, A., Nouri, V.: Static analysis of functionally graded cylindrical shell with piezoelectric layers using differential quadrature method. Compos. Struct. 92, 1775–1785 (2010)

    Article  Google Scholar 

  9. Setoodeh, A.R., Tahani, M., Selahi, E.: Hybrid layer-differential quadrature transient dynamic analysis of functionally graded axisymmetric cylindrical shells subjected to dynamic pressure. Compos. Struct. 93, 2663–2670 (2011)

    Article  Google Scholar 

  10. Jam, J.E., Maleki, S., Andakhshideh, A.: Non-linear bending analysis of moderately thick fundtionally graded plates using generalized differential quadrature method. Int. J. Aerosp. Sci. 1, 49–56 (2011)

    Google Scholar 

  11. Zhang, W., Wang, X.W.: Elastoplastic buckling analysis of thick rectangular plates by using the differential quadrature method. Comput. Math. Appl. 61, 44–61 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  12. Li, P., Yang, Y.R., Lu, L.: Instability analysis of two-dimensional thin panels in subsonic flow with differential quadrature method. J. Dyn. Control 10, 11–14 (2012)

    Google Scholar 

  13. Sherbourne, A.N., Pandey, M.D.: Differential quadrature method in the buckling analysis of beams and composite plates. Comput. Struct. 40, 903–913 (1991)

    Article  MATH  Google Scholar 

  14. Shu, C., Du, H.: Implementation of clamped and simply supported boundary conditions in the GDQ free vibration analysis of beams and plates. Int. J. Solids Struct. 34, 819–835 (1997)

    Article  MATH  Google Scholar 

  15. Shu, C., Du, H.: A generalized approach for implementing general boundary conditions in the GDQ free vibration analysis of plates. Int. J. Solids Struct. 34, 837–846 (1997)

    Article  MATH  Google Scholar 

  16. Bert, C.W., Wang, X., Striz, A.G.: Differential quadrature for static and free vibration analysis of anisotropic plates. Int. J. Solids Struct. 30, 1737–1744 (1993)

    Article  MATH  Google Scholar 

  17. Wang, X., Bert, C.W.: A new approach in applying differential quadrature to static and free vibrational analyses of beams and plates. J. Sound Vib. 162, 566–572 (1993)

    Article  MATH  Google Scholar 

  18. Malik, M., Bert, C.W.: Implementing multiple boundary conditions in the DQ solutions of high-order PDE’s: applications to free vibration of plates. Int. J. Numer. Methods Eng. 39, 1237–1258 (1996)

    Article  MATH  Google Scholar 

  19. Shu, C., Wang, M.: Treatment of mixed and non-uniform boundary conditions in GDQ vibration analysis of rectangular plates. Eng. Struct. 21, 125–134 (1999)

    Article  Google Scholar 

  20. Hsu, M.H.: Nonlinear dynamic analysis of an orthotropic composite rotor blade. J. Sci. Technol. 12, 247–255 (2004)

    Google Scholar 

  21. Chen, D.L., Yang, Y.R., Fan, C.G.: Nonlinear flutter of a two-dimension thin plate subjected to aerodynamic heating by differential quadrature method. Acta. Mech. Sin. 24, 45–50 (2008)

    Article  MATH  Google Scholar 

  22. Li, J.J., Cheng, C.J.: Differential quadrature method for analyzing nonlinear dynamic characteristics of viscoelastic plates with shear effects. Nonlinear Dyn. 61, 57–70 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  23. Nikkhoo, A., Kananipour, H., Chavoshi, H., Zarfam, R.: Application of differential quadrature method to investigate dynamics of a curved beam structure acted upon by a moving concentrated load. Indian J. Sci. Technol. 5, 3085–3089 (2012)

    Google Scholar 

  24. Ke, L.L., Wang, Y.S., Yang, J., Kitipornchai, S., Alam, F.: Nonlinear vibration of edged cracked FGM beams using differential quadrature method. Sci. China 55, 2114–2121 (2012)

    Google Scholar 

  25. Striz, A.G., Wang, X., Bert, C.W.: Harmonic differential quadrature method and applications to structural components. Acta Mech. 111, 85–94 (1995)

    Article  MATH  Google Scholar 

  26. Shu, C., Xue, H.: Explicit computation of weighting coefficients in the harmonic differential quadrature. J. Sound Vib. 204, 249–555 (1997)

    Article  Google Scholar 

  27. Shu, C., Chew, Y.T.: Fourier expansion-based differential quadrature and its application to Helmholtz eigenvalue problems. Commun. Numer. Methods Eng. 13, 643–653 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  28. Shu, C.: Differential Quadrature and its Application in Engineering. Springer, Berlin (2000)

    Book  MATH  Google Scholar 

  29. Mahzoon, M., Abiri, H., Ghayour, R.: Application of fourier differential quadrature for the analysis of photonic crystals. Commun. Numer. Methods Eng. 24, 1363–1372 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  30. Barani, S., Poorveis, D., Moradi, S.: Buckling analysis of ring-stiffened laminated composite cylindrical shells by Fourier-expansion based differential quadrature method. Appl. Mech. Mater. 225, 207–212 (2012)

    Article  Google Scholar 

  31. Alashti, R.A., Khorsand, M.: Three-dimensional nonlinear thermo-elastic analysis of functionally graded cylindrical shells with piezoelectric layer by differential quadrature method. Acta Mech. 223, 2565–2590 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  32. Ghayesh, M.H.: Nonlinear forced dynamics of o an axially moving viscoelastic beam with an internal resonance. Int. J. Mech. Sci. 53, 1022–1037 (2011)

    Article  Google Scholar 

  33. Ghayesh, M.H.: Stability and bifurcations of an axially moving beam with an intermediate spring support. Nonlinear Dyn. 69, 193–210 (2012)

    Article  MathSciNet  Google Scholar 

  34. Ghayesh, M.H., Amabili, M., Paidoussis, M.P.: Nonlinear vibrations and stability of an axially moving beam with an intermediate spring support: two-dimensional analysis. Nonlinear Dyn. 70, 335–354 (2012)

  35. Ravindra, B., Zhu, W.D.: Low dimensional chaotic response of axially accelerating continuum in the supercritical regime. Arch. Appl. Mech. 68, 195–205 (1998)

    Article  MATH  Google Scholar 

  36. Marynowski, K., Kapitaniak, T.: Kelvin-Voigt versus Burgers internal damping in modeling of axially moving viscoelastic web. Int. J. Non-linear Mech. 37, 1147–1161 (2002)

    Article  MATH  Google Scholar 

  37. Marynowski, K.: Non-linear vibrations of an axially moving viscoelastic web with time-dependent tension. Chaos Solitons Fractals 21, 481–490 (2004)

    Article  MATH  Google Scholar 

  38. Yang, X.D., Chen, L.Q.: Bifurcation and chaos of an axially accelerating viscoelastic beam. Chaos Solitons Fractals 23, 249–258 (2005)

    Article  MATH  Google Scholar 

  39. Zhang, W., Wen, H.B., Yao, M.H.: Periodic and chaotic oscillation of a parametrically excited viscoelastic moving belt with 1:3 internal resonance. Chin. J. Theor. Appl. Mech. 36, 443–454 (2004)

    Google Scholar 

  40. Liu, Y.Q., Zhang, W.: Transverse nonlinear dynamical characteristic of viscoelastic belt. J. Beijing Polytech. Univ. 33, 1131–1135 (2007)

    Google Scholar 

  41. Chen, L.H., Zhang, W., Liu, Y.Q.: Modeling of nonlinear oscillations for viscoelastic moving belt using generalized Hamilton’s principle. J. Vib. Acoust. 129, 128–132 (2007)

    Article  Google Scholar 

  42. Chen, L.H., Zhang, W., Yang, F.H.: Nonlinear dynamics of higher-dimensional system for an axially accelerating viscoelastic beam with in-plane and out-of-plane vibrations. J. Sound Vib. 329, 5321–5345 (2010)

    Article  Google Scholar 

  43. Ding, H., Chen, L.Q.: Nonlinear dynamics of axially accelerating viscoelastic beams based on differential quadrature. Acta Mech. Solida Sin. 22, 267–275 (2009)

    Article  Google Scholar 

  44. Yang, X.D., Zhang, W., Chen, L.Q., Yao, M.H.: Dynamical analysis of axially moving plate by finite difference method. Nonlinear Dyn. 67, 997–1006 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  45. Wickert, J.A., Mote, C.D.: Response and discretization methods for axially moving materials. Appl. Mech. Rev. 44, 279–284 (1991)

    Article  Google Scholar 

  46. Kong, L., Parker, R.G.: Approximate eigensolutions of axially moving beams with small flexural stiffness. J. Sound Vib. 276, 459–469 (2004)

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the support of the National Natural Science Foundation of China (NSFC) through grant Nos. 11290152, 11072008 and 11172009, the Funding Project for Academic Human Resources Development in Institutions of Higher Learning under the Jurisdiction of Beijing Municipality (PHRIHLB).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, W., Wang, D.M. & Yao, M.H. Using Fourier differential quadrature method to analyze transverse nonlinear vibrations of an axially accelerating viscoelastic beam. Nonlinear Dyn 78, 839–856 (2014). https://doi.org/10.1007/s11071-014-1481-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-014-1481-3

Keywords

Navigation