Skip to main content
Log in

Effects of nonlinear damping suspension on nonperiodic motions of a flexible rotor in journal bearings

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Nonlinear damping suspension is a promising method to be used in a rotor-bearing system for vibration isolation between the bearing and environment. However, the nonlinearity of the suspension may influence the stability of the rotor-bearing system. In this paper, the motions of a flexible rotor in short journal bearings with nonlinear damping suspension are studied. A computational method is used to solve the equations of motion, and the bifurcation diagrams, orbits, Poincaré maps, and amplitude spectra are used to display the motions. The results show that the effect of the nonlinear damping suspension on the motions of the rotor-bearing system depends on the speed of rotor: (a) For low speeds, the rotor- bearing system presents the same motion pattern under the nonlinear damping (\(p=0.5, 2, 3\)) suspension as for the linear damping (\(p=1\)) suspension; (b) For high speeds, the effect of nonlinear damping depends on a combination of the damping exponent and damping coefficient. The square root damping model (\(p=0.5\)) shows a wider stable speed range than the linear damping for large damping coefficients. The quadratic damping (\(p=2\)) shows similar results to linear damping with some special damping coefficients. The cubic damping (\(p=3\)) shows more stable response than the linear damping in general.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Abbreviations

\(b=\frac{\rho }{\delta }\) :

Dimensionless static unbalance of rotor

\(c_0\) :

Damping coefficient of the supported structure (N  (s/m)\(^{p}\))

\(c_2\) :

Damping coefficient of the rotor disk (N s/m)

\(e\) :

Dimensional eccentricity of journal (m)

\(F_r ,F_t\) :

Oil film force in radial and tangential directions (N)

\(F_x ,F_y\) :

Oil film force in X and Y directions (N)

\(g\) :

Acceleration of gravity (\(\hbox {m/s}^{2}\))

\(h\) :

Film thickness (m)

\(k_0\) :

Stiffness coefficient of the supported structure (N/m)

\(k_2\) :

Stiffness coefficient of shaft (N/m)

\(L\) :

Axial length of bearing (m)

\(m_0\) :

Mass of bearing (kg)

\(m_2\) :

Mass of rotor (kg)

\(O_0 ,O_1 ,O_2\) :

Geometric centers of bearing, journal and rotor

\(O_m\) :

Gravity center of rotor

\(p\) :

Damping exponent

\(P_m=\frac{m_0 }{m_2 }\) :

Dimensionless mass ratio

\(P_k=\frac{k_0 }{k_2 }\) :

Dimensionless stiffness ratio

\(P_r=\frac{m_2 g}{\delta k_2 }\) :

Dimensionless gravity parameter

\(R\) :

Radius of bearing (m)

\(s=\sqrt{{\omega ^{2}}/{\omega _n^{2}}}\) :

Dimensionless rotational speed ratio

\(X_i ,Y_i ,Z_i (i=0,1,2)\) :

Coordinates of \(O_0 ,O_1 ,O_2 \) (m)

\(x_i ,y_i ,z_i=\frac{X_i }{\delta },\frac{Y_i }{\delta },\frac{Z_i }{\delta }(i=0,1,2)\) :

Dimensionless coordinates

\(\alpha =\frac{\delta ^{3}\sqrt{k_2 m_2 }}{\mu RL^{3}}\) :

Dimensionless parameter

\(\beta \) :

Unit velocity (1 m/s)

\(\gamma =\frac{\delta \omega _n }{\beta }\) :

Dimensionless velocity coefficient

\(\rho \) :

Dimensional static unbalance of rotor (m)

\(\delta \) :

Radial clearance of bearing (m)

\(\varepsilon =\frac{e}{\delta }\) :

Dimensionless eccentricity of journal

\(\zeta _0=\frac{c_0 \beta ^{p-1}}{2\sqrt{k_0 m_0 }}\) :

Dimensionless damping coefficient

\(\zeta _2=\frac{c_2 }{2\sqrt{k_2 m_2 }}\) :

Dimensionless damping coefficient

\(\mu \) :

Dynamic viscosity of lubricant (Pa s)

\(\phi =\omega t\) :

Rotational angle (rad)

\(\varphi \) :

Attitude angle from the gravity direction (rad)

\(\omega \) :

Angular speed of rotor (rad/s)

\(\omega _n=\sqrt{{k_2 }/{m_2 }}\) :

Natural frequency

References

  1. Holmes, A.G., Ettles, C.M.M., Mayes, I.W.: The aperiodic behaviour of a rigid shaft in short journal bearings. Int. J. Numer. Methods Eng. 12(4), 695–702 (1978)

    Article  MATH  Google Scholar 

  2. Ehrich, F.F.: High order subharmonic response of high speed rotors in bearing clearance. J. Vib. Acoust. Stress Reliab. Des. 110(1), 9–16 (1988)

    Article  Google Scholar 

  3. Ehrich, F.F.: Some observations of chaotic vibration phenomena in high-speed rotordynamics. J. Vib. Acoust. 113(1), 50–57 (1991)

    Article  Google Scholar 

  4. Zhao, J.Y., Linnett, I.W., McLean, L.J.: Subharmonic and quasi-periodic motions of an eccentric squeeze film damper-mounted rigid rotor. J. Vib. Acoust. 116(3), 357–363 (1994)

    Article  Google Scholar 

  5. Brown, R.D., Addison, P., Chan, A.H.C.: Chaos in the unbalance response of journal bearings. Nonlinear Dyn. 5(4), 421–432 (1994)

    Article  Google Scholar 

  6. Adiletta, G., Guido, A.R., Rossi, C.: Chaotic motions of a rigid rotor in short journal bearings. Nonlinear Dyn. 10(3), 251–269 (1996)

    Article  Google Scholar 

  7. Adiletta, G., Guido, A.R., Rossi, C.: Non-periodic motions of a Jeffcott rotor with non-linear elastic restoring forces. Nonlinear Dyn. 11(1), 37–59 (1996)

    Article  Google Scholar 

  8. Chu, F., Zhang, Z.: Periodic, quasi-periodic and chaotic vibrations of a rub-impact rotor system supported on oil film bearings. Int. J. Eng. Sci. 35(10–11), 963–973 (1997)

    Article  MATH  Google Scholar 

  9. Chang-Jian, C.-W., Chen, C.-K.: Chaos and bifurcation of a flexible rub-impact rotor supported by oil film bearings with nonlinear suspension. Mech. Mach. Theory 42(3), 312–333 (2007)

    Article  MATH  Google Scholar 

  10. Chang-Jian, C.-W., Chen, Co-K: Nonlinear analysis of a rub-impact rotor supported by turbulent couple stress fluid film journal bearings under quadratic damping. Nonlinear Dyn. 56(3), 297–314 (2009)

    Article  MATH  Google Scholar 

  11. Chen, C.-L., Yau, H.-T.: Chaos in the imbalance response of a flexible rotor supported by oil film bearings with non-linear suspension. Nonlinear Dyn. 16(1), 71–90 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  12. Yau, H.-T., Chen, C.-K., Chen, C.-L.: Chaos and bifurcation analysis of a flexible rotor supported by short journal bearings with non-linear suspension. Proc. IMech C J. Mech. Eng. Sci. 214(7), 931–947 (2000)

    Article  Google Scholar 

  13. Chen, Co-K, Yau, H.-T.: Bifurcation in a flexible rotor supported by short journal bearings with nonlinear suspension. J. Vib. Control 7(5), 653–673 (2001)

    Article  MATH  Google Scholar 

  14. Chang-Jian, C.-W., Yau, H.-T.: Nonlinear numerical analysis of a flexible rotor equipped with squeeze couple stress fluid film journal bearings. Acta Mech. Solida Sin. 20(4), 309–316 (2007)

    Article  Google Scholar 

  15. Chang-Jian, C.-W., Chen, C.-K.: Bifurcation analysis of flexible rotor supported by couple-stress fluid film bearings with non-linear suspension systems. Tribol. Int. 41(5), 367–386 (2008)

    Article  Google Scholar 

  16. Chang-Jian, C.-W., Chen, C.-K.: Chaos and bifurcation of a flexible rotor supported by porous squeeze couple stress fluid film journal bearings with non-linear suspension. Chaos, Solitons Fractals 35(2), 358–375 (2008)

    Article  Google Scholar 

  17. Chang-Jian, C.-W., Chen, C.-K.: Non-linear dynamic analysis of bearing–rotor system lubricating with couple stress fluid. Proc. IMechC J. Mech. Eng. Sci. 222(4), 599–616 (2008)

    Article  Google Scholar 

  18. Chang-Jian, C.-W., Chen, Co-K: Chaos of rub-impact rotor supported by bearings with nonlinear suspension. Tribol. Int. 42(3), 426–439 (2009)

    Article  Google Scholar 

  19. Chang-Jian, C.-W., Chen, Co-K: Chaotic response and bifurcation analysis of a flexible rotor supported by porous and non-porous bearings with nonlinear suspension. Nonlinear Anal. Real World Appl. 10(2), 1114–1138 (2009)

    Article  MATH  Google Scholar 

  20. Chang-Jian, C.-W.: Non-linear dynamic analysis of dual flexible rotors supported by long journal bearings. Mech. Mach. Theory 45(6), 844–866 (2010)

    Article  MATH  Google Scholar 

  21. Chang-Jian, C.-W.: Nonlinear simulation of rotor dynamics coupled with journal and thrust bearing dynamics under nonlinear suspension. Tribol. Trans. 53(6), 897–908 (2010)

    Article  Google Scholar 

  22. Chang-Jian, C.-W., Chen, Co-K: Couple stress fluid improve rub-impact rotor-bearing system—nonlinear dynamic analysis. Appl. Math. Model. 34(7), 1763–1778 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  23. Chang-Jian, C.-W., Chen, C.-K.: Nonlinear dynamic analysis of a flexible rotor supported by micropolar fluid film journal bearings. Int. J. Eng. Sci. 44(15–16), 1050–1070 (2006)

    Article  MATH  Google Scholar 

  24. Chang-Jian, C.-W., Chen, C.-K.: Bifurcation and chaos of a flexible rotor supported by turbulent journal bearings with non-linear suspension. Proc. IMech J J. Eng. Tribol. 220(6), 549–561 (2006)

    Article  Google Scholar 

  25. Lang, Z.Q., Jing, X.J., Billings, S.A., Tomlinson, G.R., Peng, Z.K.: Theoretical study of the effects of nonlinear viscous damping on vibration isolation of sdof systems. J. Sound Vib. 323(1–2), 352–365 (2009)

    Article  Google Scholar 

  26. Laalej, H., Lang, Z.Q., Daley, S., Zazas, I., Billings, S.A., Tomlinson, G.R.: Application of non-linear damping to vibration isolation: an experimental study. Nonlinear Dyn. 69(1–2), 409–421 (2012)

    Article  Google Scholar 

  27. Pekcan, G., Mander, J.B., Chen, S.S.: Fundamental considerations for the design of non-linear viscous dampers. Earthq. Eng. Struct. Dyn. 28(11), 1405–1425 (1999)

    Article  Google Scholar 

  28. Rüdinger, F.: Optimal vibration absorber with nonlinear viscous power law damping and white noise excitation. J. Eng. Mech. 132(1), 46–53 (2006)

    Article  Google Scholar 

  29. Lang, Z.Q., Guo, P.F., Takewaki, I.: Output frequency response function based design of additional nonlinear viscous dampers for vibration control of multi-degree-of-freedom systems. J. Sound Vib. 332(19), 4461–4481 (2013)

    Article  Google Scholar 

  30. Ravindra, B., Mallik, A.K.: Role of nonlinear dissipation in soft Duffing oscillators. Phys. Rev. E 49(6), 4950–4954 (1994)

    Article  Google Scholar 

  31. Ravindra, B., Mallik, A.K.: Stability analysis of a non-linearly damped duffing oscillator. J. Sound Vib. 171(5), 708–716 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  32. Sharma, A., Patidar, V., Purohit, G., Sud, K.K.: Effects on the bifurcation and chaos in forced Duffing oscillator due to nonlinear damping. Commun. Nonlinear Sci. Numer. Simul. 17(6), 2254–2269 (2012)

    Article  MathSciNet  Google Scholar 

  33. Sanjuán, M.A.F.: The effect of nonlinear damping on the universal escape oscillator. Int. J. Bifurcat. Chaos 09(04), 735–744 (1999)

    Article  Google Scholar 

  34. Terenzi, G.: Dynamics of SDOF systems with nonlinear viscous damping. J. Eng. Mech. 125(8), 956–963 (1999)

    Article  Google Scholar 

  35. Trueba, J.L., Rams, J., Sanjuan, M.A.: Analytical estimates of the effect of nonlinear damping in some nonlinear oscillators. Int. J. Bifurcat. Chaos 10(09), 2257–2267 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  36. Housner, G., Bergman, L., Caughey, T., Chassiakos, A., Claus, R., Masri, S., Skelton, R., Soong, T., Spencer, B., Yao, J.: Structural control: past, present, and future. J. Eng. Mech. 123(9), 897–971 (1997)

  37. Gohar, R., Rahnejat, H.: Fundamentals of Tribology, 2nd edn. Imperial College Press, London (2012)

    Book  MATH  Google Scholar 

  38. Szeri, A.Z.: Fluid Film Lubrication, 2nd edn. Cambridge University Press, Cambridge (2011)

    Google Scholar 

  39. Zhu, X., Andres, L.S.: Rotordynamic performance of flexure pivot hydrostatic gas bearings for oil-free turbomachinery. J. Eng. Gas. Turbines Power 129(4), 1020–1027 (2007)

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Natural Science Foundation of China (No. 50975199). Financial supports from China Scholarship Council are gratefully acknowledged, and this work was completed, while the author Shuai Yan was a visiting scholar in Duke University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin Lin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, S., Dowell, E.H. & Lin, B. Effects of nonlinear damping suspension on nonperiodic motions of a flexible rotor in journal bearings. Nonlinear Dyn 78, 1435–1450 (2014). https://doi.org/10.1007/s11071-014-1526-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-014-1526-7

Keywords

Navigation