Skip to main content
Log in

Optimal synchronization of teleoperation systems via cuckoo optimization algorithm

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The main goal of controller design in bilateral teleoperation systems is to achieve stability and transparency in presence of different factors such as time delay in communication channel and modeling uncertainties. The contribution of this paper is designing an optimal controller for synchronization of bilateral teleoperation systems with the objectives of reducing the factors. This requires optimizing a set of parameters of the so-called synchronization control law. To this reason, a novel meta-heuristic algorithm namely cuckoo optimization (CO) algorithm was employed. Comparative simulations are performed to demonstrate the feasibility of the proposed control technique. The results indicate that CO is a powerful search and optimization technique that may yield better solutions to the problem in hand than those obtained using other algorithms including biogeography-based optimization, imperialist competitive and artificial bee colony.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Zhang, G.D., Shen, Y.: Exponential synchronization of delayed memristor-based chaotic neural networks via periodically intermittent control. Neural Netw. 55, 1–10 (2014)

    Article  MathSciNet  Google Scholar 

  2. Zhang, G.D., Shen, Y., Chen, B.S.: Hopf bifurcation of a predator-prey system with predator harvesting and two delays. Nonlinear Dyn. 73, 2119–2131 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  3. Yokokohji, Y., Yoshikawa, T.: Bilateral control of master-slave manipulators for ideal kinesthetic coupling: formulation and experiment. IEEE Trans. Robot. Autom. 10(5), 605–620 (1994)

    Article  Google Scholar 

  4. Anderson, R.J., Spong, M.W.: Bilateral control of teleoperators with time delay. IEEE Trans. Autom. Control 34(5), 494–501 (1989)

    Article  MathSciNet  Google Scholar 

  5. Niemeyer, G., Slotine, J.: Stable adaptive teleoperation. IEEE J. Ocean. Eng. 16(1), 152–162 (1991)

    Article  Google Scholar 

  6. Shahdi, A., Sirouspour, S.: Adaptive/Robust control for time-delay teleoperation. IEEE Trans. Robot. 25(1), 196–205 (2009)

    Article  Google Scholar 

  7. Alfi, A., Khosravi, A., Lari, A.: Swarm-based structure-specified controller design for bilateral transparent teleoperation systems via \(\mu \) synthesis. IMA J. Math. Control Inf. (2013). doi:10.1093/imamci/dnt005

  8. Alfi, A., Farrokhi, M.: A simple structure for bilateral transparent teleoperation systems with time delay. ASME J. Dyn. Syst. Meas. Control 130(4), 044502 (2008). doi:10.1115/1.2936854

  9. Alfi, A., Farrokhi, M.: Force reflecting bilateral control of master-slave systems in teleoperation. Intell. Robot. Syst. 52(2), 209–232 (2008)

  10. Alfi, A., Khosravi, A., Roshandel, A.: Delay-dependent stability for transparent bilateral teleoperation system in presence of model mismatch: an LMI approach. J. AI Data Min. 1(2), 75–87 (2013)

    Google Scholar 

  11. Hokayem, P.F., Spong, M.W.: Bilateral teleoperation: an historical survey. Automatica 42, 2035–2057 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  12. Nuño, E., Basañez, L., Ortega, R.: Passivity-based control for bilateral teleoperation: a tutorial. Automatica 47, 485–495 (2011)

    Article  MATH  Google Scholar 

  13. Chopra, N., Spong, M.W., Ortega, R., Barabanov, N.E.: On tracking performance in bilateral teleoperation. IEEE Trans. Robot. 22(4), 861–866 (2006)

    Article  Google Scholar 

  14. Namerikawa, T., Kawada, H.: Symmetric impedance matched teleoperation with position tracking. In: Proceedings of the 45th IEEE Conference on Decision and Control, pp. 4496–4501 (2006)

  15. Nuño, E., Basañez, L., Ortega, R., Spong, M.W.: Position tracking for nonlinear teleoperators with variable time-delay. Int. J. Robot. Res. 28(7), 895–910 (2009)

    Article  Google Scholar 

  16. Nuño, E., Ortega, R., Barabanov, N., Basañez, L.: A globally stable PD controller for bilateral teleoperators. IEEE Trans. Robot. 24(3), 753–758 (2008)

    Article  Google Scholar 

  17. Nuño, E., Ortega, R., Basañez, L.: An adaptive controller for nonlinear bilateral teleoperators. Automatica 46(1), 155–159 (2010)

  18. Polushin, I.G., Marquez, H.J.: Stabilization of bilaterally controlled teleoperators with communication delay: an ISS approach. Int. J. Control 76(8), 858–870 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  19. Chopra, N., Spong, M.W., Lozano, R.: Synchronization of bilateral teleoperators with time delay. Automatica 44(8), 2142–2148 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  20. Chopra, N., Spong, M.W.: Passivity-based control of multi-agent systems. Advances in robot control, from everyday physics to human-like movements, pp. 107–134. Springer, Berlin (2006)

  21. Chopra, N., Spong, M.W.: On synchronization of networked passive systems with time delays and application to bilateral teleoperation. In: Proceedings of IEEE/SICE Annual Conference, pp. 3424–3429 (2005)

  22. Lozano, R., Chopra, N.: Convergence analysis of bilateral teleoperation with constant human input. American Control Conference, pp. 1443–1448 . New York, USA (2007)

  23. Kawada, H., Yoshida, K., Namerikawa, T.: Synchronized control for teleoperation with different configurations and communication delay. In: Proceedings of the 46th IEEE Conference on Decision and Control, pp. 2546–2551 (2007)

  24. Nocedal, J., Wright, J.: Numerical Optimization. Springer Series in Operations Research (1999)

  25. Alfi, A., Khosravi, A.: Constrained nonlinear optimal control via a hybrid BA-SD. Int. J. Eng. 25(3), 197–204 (2012)

    Google Scholar 

  26. Alfi, A.: PSO with adaptive mutation and inertia weight and its application in parameter estimation of dynamic systems. Acta Autom. 37(5), 541–549 (2011)

    MATH  Google Scholar 

  27. Alfi, A., Fateh, M.M.: Intelligent identification and control using improved fuzzy particle swarm optimization. Expert Syst. Appl. 38, 12312–12317 (2011)

    Article  Google Scholar 

  28. Modares, H., Alfi, A., Naghibi Sistani, M.B.: Parameter estimation of bilinear systems based on an adaptive particle swarm optimization. J. Eng. Appl. Artif. Intell. 23, 1105–1111 (2010)

    Article  Google Scholar 

  29. Alfi, A., Fateh, M.M.: Identification of nonlinear systems using modified particle swarm optimization: a hydraulic suspension system. J. Veh. Syst. Dyn. 46(6), 871–887 (2011)

    Article  Google Scholar 

  30. Alfi, A., Modares, H.: System identification and control using adaptive particle swarm optimization. Appl. Math. Model. 35, 1210–1221 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  31. Darabi, A., Alfi, A., Kiumarsi, B., Modares, H.: Employing adaptive PSO algorithm for parameter estimation of an exciter machine. ASME J. Dyn. Syst. Meas. Control 134(1), (2012). doi:10.1115/1.4005371

  32. Balaram, B., Narayanan, M.D., Rajendrakumar, P.K.: Optimal design of multi-parametric nonlinear systems using a parametric continuation based Genetic Algorithm approach. Nonlinear Dyn. 67(4), 2759–2777 (2012)

    Article  MathSciNet  Google Scholar 

  33. Tenreiro Machado, J.A.: Optimal tuning of fractional controllers using genetic algorithms. Nonlinear Dyn. 62, 447–452 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  34. Mokeddem, D., Khellaf, A.: Optimal feeding profile for a fuzzy logic controller in a bioreactors using genetic algorithm. Nonlinear Dyn. 67(4), 2835–2845 (2012)

    Article  MathSciNet  Google Scholar 

  35. Solteiro Pires, E.J., Tenreiro Machado, J.A., de Moura Oliveira, P.B., Boaventura Cunha, J., Mendes, L.: Particle swarm optimization with fractional-order velocity. Nonlinear Dyn. 61, 295–301 (2010)

    Article  MATH  Google Scholar 

  36. Gao, Z., Liao, X.: Rational approximation for fractional-order system by particle swarm optimization. Nonlinear Dyn. 67(2), 1387–1395 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  37. Tang, K.S., Man, K.F., Istepanian, R.S.H.: Teleoperation controller design using hierarchical genetic algorithm. In: Proceedings of the IEEE International Conference on Industrial Technology, vol. 1, pp. 707–711 (2000)

  38. Talavatifard, H.A., Razi, K., Menhaj, M.B.: A self-tuning controller for teleoperation system using evolutionary learning algorithms in neural networks. Comput. Intell. Theory Appl. 38, 51–60 (2006)

  39. Kim, B.Y., Ahn, H.S.: Bilateral teleoperation systems using genetic algorithms. In: Proceedings of the IEEE International Symposium on Computational Intelligence in Robotics and Automation, pp. 388–393 (2009)

  40. Gál, L., Kóczy, L.T., Lovassy, R.: A novel version of the bacterial memetic algorithm with modified operator execution order. Óbuda University e-Bulletin 1(1), 25–34 (2010)

  41. Karaboga, D., Basturk, B.: A powerful and efficient algorithm for numeric optimization: artificial bee colony algorithm. J. Glob. Optim. 39(3), 459–471 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  42. Karaboga, D., Akay, B.: A comparative study of artificial bee colony algorithm. Appl. Math. Comput. 214, 108–132 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  43. Atashpaz-Gargari, E., Lucas, C.: Imperialist competitive algorithm: an algorithm for optimization inspired by imperialistic competition. IEEE Congress on Evolutionary Computation, 25–28 Sep., pp. 4661–4667 (2007)

  44. Simon, D.: Biogeography-based optimization. IEEE Trans. Evol. Comput. 12(6), 702–713 (2008)

    Article  Google Scholar 

  45. Rajabioun, R.: Cuckoo optimization algorithm. Appl. Soft Comput. 11, 5508–5518 (2011)

    Article  Google Scholar 

  46. Spong, M.W., Hutchinson, S., Vidyasagar, M.: Robot Modeling and Control. Wiley, New York (2005)

  47. Chopra, N., Spong, M.W.: Adaptive coordination control of bilateral teleoperators with time delay. In: Proceedings of the 43th IEEE Conference on Decision and Control, pp. 2546–2551 (2004)

  48. Coelho, L., Afonso, L., Alotto, P.: A modified imperialist competitive algorithm for optimization in electromagnetic. IEEE Trans. Magn. 48(2), 579–582 (2012)

    Article  Google Scholar 

  49. Lucas, C., Nasiri-Gheidari, Z., Tootoonchian, F.: Application of an imperialist competitive algorithm to the design of a linear induction motor. Energy Convers. Manag. 51(7), 1407–1411 (2010)

    Article  Google Scholar 

  50. Kang, F., Li, J., Ma, Z.: Rosenbrock artificial bee colony algorithm for accurate global optimization of numerical functions. Inf. Sci. (11), S0020–0255, 00198–8 (2011). doi:10.1016/j.ins.2011.04.024

  51. Garcia-Valdovinos, L.G., Parra-Vega, V., Mendez-Iglesias, J.A., Arteaga, M.A.: Cartesian sliding PID force/position control for transparent bilateral teleoperation. In: Proceedings 31st Annual Conference of IEEE Industrial Electronics, pp. 1979–1985 (2005)

  52. Khalil, H.: Nonlinear Systems. Prentice Hall, USA (2002)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Alfi.

Appendix

Appendix

Proof

According to (28), we have

$$\begin{aligned} F_m&= K_D\dot{e}_m (t)+K_P e_m (t)\nonumber \\&= K_D (\dot{e}_m +K_D^{-1}K_P e_m) \end{aligned}$$
(42)

Choosing \(\lambda =K_D^{-1} K_P\) and using Eqs. (26) and (27), Eq. (42) can be rewritten as

$$\begin{aligned} F_m&= K_D (\dot{e}_m +\lambda e_m)\nonumber \\&= K_D e_{rm} \nonumber \\&= K_D [r_s (t-T)-r_m (t)] \end{aligned}$$
(43)

Similarly, from Eq. (29), we get

$$\begin{aligned} F_s&= K_D (\dot{e}_s +\lambda e_s)\nonumber \\&= K_D e_{rs} \nonumber \\&= K_D [r_m (t-T)-r_s (t)] \end{aligned}$$
(44)
Fig. 12
figure 12

Parameter estimation profile using ABC in scenario 2

Fig. 13
figure 13

Parameter estimation profile using BBO in scenario 2

Fig. 14
figure 14

Parameter estimation profile using IC in scenario 2

Fig. 15
figure 15

Parameter estimation profile using CO in scenario 2

Fig. 16
figure 16

Position tracking using CO in scenario 2

Fig. 17
figure 17

Force tracking using CO in scenario 2

In addition, under Assumption A1., the following equation can be derived [47].

$$\begin{aligned} \int _0^t {(F_e^T r_s -F_h^T r_m)\hbox {d}t} \ge 0 \end{aligned}$$
(45)

In order to analyze the stability, consider the following Lyapunov function candidate

$$\begin{aligned} V=V_1+V_2+V_3 \end{aligned}$$
(46)

where

$$\begin{aligned} V_1&= r_m^T M_m r_m +r_s^T M_s r_s\nonumber \\&+2\int _0^t (F_e^T r_s - F_h^Tr_m)\hbox {d}t\end{aligned}$$
(47)
$$\begin{aligned} V_2&= K_D \int _{t-T}^t (r_m^T r_m +r_s^T r_s)\hbox {d}t +e_m^T \lambda K_D e_m\nonumber \\&+\,e_s^T\lambda K_D e_s \end{aligned}$$
(48)
$$\begin{aligned} V_3&= \tilde{\theta }_m^T \Gamma ^{-1}\tilde{\theta }_m +\,\tilde{\theta }_s^T\Lambda ^{-1}\tilde{\theta }_s \end{aligned}$$
(49)

The time derivative of the Lyapunov function along the trajectory of the system is given as follows: For derivative of \(V_1\), we have

$$\begin{aligned} \dot{V}_1&= 2r_m^T M_m \dot{r}_m +2r_s^T M_s \dot{r}_s +r_m^T \dot{M}_m r_m +r_s^T \dot{M}_s r_s\nonumber \\&+\,2F_e^T r_s -2F_h^T r_m \nonumber \\&= 2r_m^T (-C_m r_m +F_h +Y_m \tilde{\theta }_m +F_m)\nonumber \\&+\,2r_s^T (-C_s r_s -F_e +Y_s \tilde{\theta }_s +F_s)\nonumber \\&+\,r_m^T \dot{M}_m r_m +r_s^T \dot{M}_s r_s +2F_e^T r_s -2F_h^T r_m \nonumber \\&= 2r_m^T F_m +2r_s^T F_s +2r_m^T Y_m \tilde{\theta }_m +2r_s^T Y_s \tilde{\theta }_s \nonumber \\&+\,r_m^T (\dot{M}_m -2C_m)r_m +r_s^T (\dot{M}_s -2C_s)r_s \end{aligned}$$
(50)

From P2. \((\dot{M}_i (q)-2C_i (q,\dot{q}), i=m,s)\) is a skew symmetric matrix. Thus

$$\begin{aligned} \dot{V}_1 =2r_m^T F_m +2r_s^T F_s +2r_m^T Y_m \tilde{\theta }_m +2r_s^T Y_s \tilde{\theta }_s \end{aligned}$$
(51)

For derivative of \(V_2\), we have

$$\begin{aligned} \dot{V}_2&= K_D [r_m^T r_m +r_s^T r_s -r_m^T (t-T)r_m (t-T)\nonumber \\&-r_s^T (t-T)r_s (t-T)]\nonumber \\&+\,2e_m^T \lambda K_D \dot{e}_m +2e_s^T \lambda K_D \dot{e}_s\nonumber \\&= K_D [r_m -r_s (t-T)]^{T}[r_m +r_s (t-T)]\nonumber \\&+\,K_D [r_s -r_m (t-T)]^{T}[r_s +r_m (t-T)] \nonumber \\&+\,2e_m^T \lambda K_D \dot{e}_m +2e_s^T \lambda K_D \dot{e}_s\nonumber \\&= K_D [r_m -r_s (t-T)]^{T}[2r_m -r_m +r_s (t-T)]\nonumber \\&+\,K_D [r_s -r_m (t-T)]^{T}[2r_s -r_s +r_m (t-T)]\nonumber \\&+\,2e_m^T \lambda K_D \dot{e}_m +2e_s^T \lambda K_D \dot{e}_s\nonumber \\&= 2r_m^T K_D [r_m -r_s (t-T)]\nonumber \\&+\,2r_s^T K_D [r_s -r_m (t-T)]\nonumber \\&-\,K_D [r_m -r_s (t-T)]^{T}[r_m -r_s (t-T)]\nonumber \\&-\,K_D [r_s -r_m (t-T)]^{T}[r_s -r_m (t-T)] \nonumber \\&+\,2e_m^T \lambda K_D \dot{e}_m +2e_s^T \lambda K_D \dot{e}_s \nonumber \\&= -2r_m^T K_D [r_s (t-T)-r_m]\nonumber \\&-\,2r_s^T K_D [r_m (t-T)-r_s] \nonumber \\&-\,K_D [r_m -r_s (t-T)]^{T}[r_m -r_s (t-T)]\nonumber \\&-\,K_D [r_s -r_m (t-T)]^{T}[r_s -r_m (t-T)] \nonumber \\&+\,2e_m^T \lambda K_D \dot{e}_m +2e_s^T \lambda K_D \dot{e}_s \end{aligned}$$
(52)

From Eqs. (26) and (27), we have

$$\begin{aligned} \dot{V}_2&= -2r_m^T K_D [r_s (t-T)-r_m]\nonumber \\&-\,\,2r_s^T K_D [r_m (t-T)-r_s] \nonumber \\&-\,\,(\dot{e}_m +\lambda e_m)^{T}K_D (\dot{e}_m +\lambda e_m)\nonumber \\&-\,\,(\dot{e}_s+\lambda e_s)^{T}K_D (\dot{e}_s +\lambda e_s)\nonumber \\&+\,\,2e_m^T \lambda K_D \dot{e}_m +2e_s^T \lambda K_D \dot{e}_s \end{aligned}$$
(53)

Substituting (43) and (44) into Eq. (53), it yields

$$\begin{aligned} \dot{V}_2&= -2r_m^T F_m -2r_s^T F_s-\dot{e}_m^T K_D \dot{e}_m\nonumber \\&-\,\,\dot{e}_s^T K_D \dot{e}_s -e_m^T \lambda ^{T}K_D \lambda e_m-e_s^T \lambda ^{T}K_D \lambda e_s\nonumber \\ \end{aligned}$$
(54)

The derivative of \(V_3\) is given by

$$\begin{aligned} \dot{V}_3&= 2\tilde{\theta }_m^T \Gamma ^{-1}\dot{\tilde{\theta }}_m+ 2\tilde{\theta }_s^T \Lambda ^{-1}\dot{\tilde{\theta }}_s\nonumber \\&+\,\,\tilde{\theta }_m^T \dot{\Gamma }^{-1}\tilde{\theta }_m+ \tilde{\theta }_s^T \dot{\Lambda }^{-1}\tilde{\theta }_s \nonumber \\&= -2\tilde{\theta }_m^T \Gamma ^{-1}\dot{\hat{\theta }}_m-2 \tilde{\theta }_s^T \Lambda ^{-1}\dot{\hat{\theta }}_s \end{aligned}$$
(55)

Using Eqs. (24) and (25), it is straightforward to see that

$$\begin{aligned} \dot{V}_3&= -2\tilde{\theta }_m^T \Gamma ^{-1}\Gamma Y_{^{m}}^T r_m -2\tilde{\theta }_s^T \Lambda ^{-1}\Lambda Y_{^{s}}^T r_s \nonumber \\&= -2\tilde{\theta }_m^T Y_{^{m}}^T r_m -2\tilde{\theta }_s^T Y_{^{s}}^T r_s \end{aligned}$$
(56)

From there

$$\begin{aligned} \dot{V}&= \dot{V}_1 +\dot{V}_2 +\dot{V}_3\nonumber \\&= (2r_m^T F_m +2r_s^T F_s +2r_m^T Y_m \tilde{\theta }_m \nonumber \\&+\,2r_s^T Y_s \tilde{\theta }_s) +\,(-2r_m^T F_m -2r_s^T F_s -\dot{e}_m^T K_D \dot{e}_m \nonumber \\&-\,\dot{e}_s^T K_D \dot{e}_s -\,e_m^T \lambda ^{T}K_D \lambda e_m -e_s^T \lambda ^{T}K_D \lambda e_s)\nonumber \\&+\,(-2\tilde{\theta }_m^T Y_{^{m}}^T r_m -2\tilde{\theta }_s^T Y_{^{s}}^T r_s)\nonumber \\&= -\,\dot{e}_m^T K_D \dot{e}_m -\dot{e}_s^T K_D \dot{e}_s \nonumber \\&-\,e_m^T \lambda ^{T}K_D \lambda e_m -e_s^T \lambda ^{T}K_D \lambda e_s \end{aligned}$$
(57)

As is evident above, the time derivative of the Lyapunov function \(\dot{V}\) is negative semi definite. To illustrate that \(\dot{V}\) is the uniformly continuous in time, it is necessary to show that \(\ddot{V}\) is finite. Taking the time derivative from (57) leads to

$$\begin{aligned} \ddot{V}&= -2\dot{e}_m^T K_D \ddot{e}_m -2\dot{e}_s^T K_D \ddot{e}_s\nonumber \\&-2e_m^T \lambda ^{T}K_D \lambda \dot{e}_m -2e_s^T \lambda ^{T}K_D \lambda \dot{e}_s \end{aligned}$$
(58)

It is obvious that \(\ddot{V}\) satisfies the bounded condition when \(\dot{e}_m, \dot{e}_s, \ddot{e}_m\) and \(\ddot{e}_s\) are bounded. Because of \(\dot{V}\) is negative semi definite, \(r_m,r_s, \tilde{\theta }_m, \tilde{\theta }_s\) are bounded from (57). Since \(r_m\) and \(r_s\) are bounded, it follows that \(q_s,q_m, \dot{q}_s\) and \(\dot{q}_m\) are bounded and thus \(e_s,e_m,\dot{e}_s\) and \(\dot{e}_m\) are also bounded. According to Eq. (4), \(\ddot{q}_s\) and \(\ddot{q}_m\) and thus \(\ddot{e}_s\) and \(\ddot{e}_m\) are also bounded. It concludes that \(\ddot{V}\) satisfies the bounded condition. Now, from Barbalat’s lemma [52], \(\dot{V}\) is uniformly continuous and then \(\dot{V}\) converge to zero. This proves that the signals \(\dot{e}_m, \dot{e}_s ,e_m ,e_s\) converge to zero as well as the system is asymptotically stable. This completes the proof. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shokri-Ghaleh, H., Alfi, A. Optimal synchronization of teleoperation systems via cuckoo optimization algorithm. Nonlinear Dyn 78, 2359–2376 (2014). https://doi.org/10.1007/s11071-014-1589-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-014-1589-5

Keywords

Navigation