Skip to main content
Log in

Quasi-periodic harmonic balance method for rubbing self-induced vibrations in rotor–stator dynamics

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

A quasi-periodic harmonic balance method (HBM) coupled with a pseudo arc-length continuation algorithm is developed and used for the prediction of the steady-state dynamic behaviour of rotor–stator contact problems. Quasi-periodic phenomena generally involve two incommensurable fundamental frequencies, and at present, the HBM has been adapted to deal with cases where those frequencies are known. The problem here is to improve the procedure in order to be able to deal with cases where one of the two fundamental frequencies is a priori unknown, in order to be able to reproduce self-excited phenomena such as the so-called quasi-periodic partial rub. Considering the proposed developments, the unknown fundamental frequency is automatically determined during calculation and an automatic harmonic selection procedure gives both accuracy and performance improvements. The application is based on a Jeffcott rotor model, and results obtained are compared with traditional time-marching solutions. The modified quasi-periodic HBM appears one order of magnitude faster than transient simulations while providing very accurate results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Jacquet-Richardet, G., Torkhani, M., Cartraud, P., Thouverez, F., Nouri Baranger, T., Herran, M., Gibert, C., Baguet, S., Almeida, P., Peletan, L.: Rotor to stator contacts in turbomachines. Review and application. Mech. Syst. Signal Process. 40(2), 401–420 (2013)

    Article  Google Scholar 

  2. Edwards, S., Lees, A.W., Friswell, M.I.: The influence of torsion on rotor/stator contact in rotating machinery. J. Sound Vib. 225(4), 767–778 (1999)

    Article  Google Scholar 

  3. Feng, Z., Zhang, X.Z.: Rubbing phenomena in rotor–stator contact. Chaos, Solitons Fract. 14(2), 257–267 (2002)

    Article  MATH  Google Scholar 

  4. Popprath, S., Ecker, H.: Nonlinear dynamics of a rotor contacting an elastically suspended stator. J. Sound Vib. 308(3–5), 767–784 (2007)

    Article  Google Scholar 

  5. Han, Q., Zhang, Z., Wen, B.: Periodic motions of a dual-disc rotor system with rub-impact at fixed limiter. Proc. Inst. Mech. Eng. C J. Mech. Eng. Sci. 222(10), 1935–1946 (2008)

    Article  Google Scholar 

  6. An, X., Zhou, J., Xiang, X., Li, C., Luo, Z.: Dynamic response of a rub-impact rotor system under axial thrust. Arch. Appl. Mech. 79(11), 1009–1018 (2009)

    Article  MATH  Google Scholar 

  7. Grapis, O., Tamuzs, V., Ohlson, N.G., Andersons, J.: Overcritical high-speed rotor systems, full annular rub and accident. J. Sound Vib. 290(3–5), 910–927 (2006)

    Article  Google Scholar 

  8. Braut, S., Zigulic, R., Skoblar, A., Stimac, G., Butkovic, M., Jokic, M.: Dynamic analysis of the rotor-stator contact due to blade loss. In: 12th IFToMM World Congress. Besançon, France (2007)

  9. Qin, W., Chen, Q., Meng, G.: Nonlinear responses of a rub-impact overhung rotor. Chaos, Solitons Fractals 19(5), 1161–1172 (2004)

    Article  MATH  Google Scholar 

  10. Jiang, J., Ulbrich, H.: Stability analysis of sliding whirl in a nonlinear jeffcott rotor with cross-coupling stiffness coefficients. Nonlinear Dyn. 24(3), 269–283 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  11. Jiang, J.: Determination of the global responses characteristics of a piecewise smooth dynamical system with contact. Nonlinear Dyn. 57(3), 351–361 (2009)

    Article  MATH  Google Scholar 

  12. Bently, D., Goldman, P., Yu, J.: Full annular rub in mechanical seals, part ii: analytical study. Int. J. Rotating Mach. 8(5), 329–336 (2002)

    Article  Google Scholar 

  13. Childs, D., Bhattacharya, A.: Prediction of dry-friction whirl and whip between a rotor and a stator. J. Vib. Acoust. 129(3), 355–362 (2007)

    Article  Google Scholar 

  14. Sundararajan, P., Noah, S.: An algorithm for response and stability of large order non-linear systems—application to rotor systems. J. Sound Vib. 214(4), 695–723 (1998)

    Article  Google Scholar 

  15. Lau, S., Cheung, Y., Wu, S.: Incremental harmonic balance method with multiple time scales for aperiodic vibration of nonlinear systems. J. Appl. Mech. 50(4), 871–876 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  16. Legrand, M.: Modèles de prédiction de l’intéraction rotor/stator dans un moteur d’avion. Ph.D. Thesis, École Centrale de Nantes (2005)

  17. Legrand, M., Roques, S., Pierre, C., Peseux, B., Cartraud, P.: \(n\)-Dimensional harmonic balance method extended to non-explicit nonlinearities. Rev. Eur. Mec. Num. 15, 269–280 (2006)

    MATH  Google Scholar 

  18. Coudeyras, N., Nacivet, S., Sinou, J.J.: Periodic and quasi-periodic solutions for multi-instabilities involved in brake squeal. J. Sound Vib. 328(4–5), 520–540 (2009)

    Article  Google Scholar 

  19. Laxalde, D., Thouverez, F.: Complex non-linear modal analysis for mechanical systems: application to turbomachinery bladings with friction interfaces. J. Sound Vib. 322(4–5), 1009–1025 (2009)

    Article  Google Scholar 

  20. Guskov, M., Sinou, J.J., Thouverez, F.: Multi-dimensional harmonic balance applied to rotor dynamics. Mech. Res. Commun. 35(8), 537–545 (2008)

    Article  MATH  Google Scholar 

  21. Schilder, F., Vogt, W., Schreiber, S., Osinga, H.: Fourier methods for quasi-periodic oscillations. Int. J. Numer. Methods Eng. 67(5), 629–671 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  22. EDF R&D, Code\_aster: A general code for structural dynamics simulation under gnu gpl licence. http://www.code-aster.org (2001)

  23. Jones, E.,Oliphant, T., Peterson, P., et al.: Scipy: Open source scientific tools for Python. http://www.scipy.org/scipylib/citing.html (2001)

  24. Petrov, E., Ewins, D.: Analytical formulation of friction interface elements for analysis of nonlinear multi-harmonic vibrations of bladed disks. J. Turbomach. 125(2), 364–371 (2003)

    Article  Google Scholar 

  25. Cameron, T., Griffin, J.: An alternating frequency/time domain method for calculating the steady-state response of nonlinear dynamic systems. J. Appl. Mech. 56(1), 149–154 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  26. Peletan, L., Baguet, S., Torkhani, M., Jacquet-Richardet, G.: A comparison of stability computational methods for periodic solution of nonlinear problems with application to rotordynamics. Nonlinear Dyn. 72(3), 671–682 (2013)

    Article  MathSciNet  Google Scholar 

  27. Nayfeh, A., Balachandran, B.: Applied Nonlinear Dynamics: Analytical, Computational, and Experimental Methods. Wiley, New York (1995)

    Book  MATH  Google Scholar 

  28. Doedel, E.: Lecture notes on numerical analysis of nonlinear equations. In: Krauskopf, B., Osinga, H., Galan-Vioque, J. (eds.) Numerical Continuation Methods for Dynamical Systems, pp. 1–49. Springer, The Netherlands (2007)

    Chapter  Google Scholar 

  29. Chua, L., Ushida, A.: Algorithms for computing almost periodic steady state response of non-linear systems to multiple input frequencies. IEEE Trans. Circuits Syst. 28, 953–971 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  30. Kim, Y.B., Choi, S.K.: A multiple harmonic balance method for the internal resonant vibration of a non-linear jeffcott rotor. J. Sound Vib. 208(5), 745–761 (1997)

    Article  Google Scholar 

  31. Laxalde, D.: Etude d’amortisseurs non-linéaires appliqués aux roues aubagées et aux systèmes multi-étages. Ph.D. Thesis, École Centrale Lyon (2007)

  32. Jaumouille, S., Sinou, J., Petitjean, B.: An adaptive harmonic balance method for predicting the nonlinear dynamic responses of mechanical systems-application to bolted structures. J. Sound Vib. 329, 4048–4067 (2010)

  33. Grolet, A., Thouverez, F.: On a new harmonic selection technique for harmonic balance method. Mech. Syst. Signal Process. 30, 43–60 (2012)

    Article  Google Scholar 

  34. Beyn, W., Champneys, A., Doedel, E., Kuznetsov, A., Y.U., Govaerts, W. , Sandstede, B.: Numerical Continuation, and Computation of Normal Forms. Handbook of Dynamical Systems, vol. 2, chap. 4. Elsevier, Amsterdam, pp. 149–219 (2002)

  35. Seydel, R.: Practical Bifurcation and Stability Analysis. Interdisciplinary Applied Mathematics. Springer, Berlin (2010)

  36. Peletan, L.: Stratégie de modélisation simplifiée et de résolution accélérée en dynamique non linéaire des machines tournantes. Application au contact rotor-stator. Ph.D. Thesis, INSA Lyon, 2012-ISAL-0146 (2012)

Download references

Acknowledgments

This work was partially supported by the French National Agency (ANR) in the framework of its Technological Research COSINUS program (IRINA, Project ANR 09 COSI 008 01 IRINA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sébastien Baguet.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peletan, L., Baguet, S., Torkhani, M. et al. Quasi-periodic harmonic balance method for rubbing self-induced vibrations in rotor–stator dynamics. Nonlinear Dyn 78, 2501–2515 (2014). https://doi.org/10.1007/s11071-014-1606-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-014-1606-8

Keywords

Navigation