Skip to main content
Log in

A novel method to identify boundaries of basins of attraction in a dynamical system using Lyapunov exponents and Monte Carlo techniques

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Stability analysis is a critical part of the study of a dynamical system that includes: finding the attractors of the system, determining their stability or instability, and identifying basins of attraction (BoAs) of the attractors. There are some classical methods for finding parts of BoAs, like Lyapunov-based and Non-Lyapunov-based methods; however, due to the limitations of the current methods, the identification of a complex boundary of a BoA is not feasible in addition to the high computational load of these methods. The concept of Lyapunov exponents is a powerful tool for performing stability analysis of highly nonlinear systems. In this paper, a new and intelligent approach for identifying the boundary of the entire BoA using Lyapunov exponents, Monte Carlo techniques, and support vector machine learning algorithm is developed. The proposed approach can identify the boundary of BoAs due to the intelligent sampling brought by Monte Carlo technique, which also dramatically reduces the computational load. Three illustrative examples are presented to demonstrate the effectiveness of the proposed approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Slotine, J.-J.E., Li, W., et al.: Applied nonlinear control, vol. 199. Prentice Hall, New Jersey (1991)

    Google Scholar 

  2. Śliwa, I., Grygiel, K.: Periodic orbits, basins of attraction and chaotic beats in two coupled kerr oscillators. Nonlinear Dyn. 67(1), 755–765 (2012)

    Article  Google Scholar 

  3. de Freitas, M.S., Viana, R.L., Grebogi, C.: Basins of attraction of periodic oscillations in suspension bridges. Nonlinear Dyn. 37(3), 207–226 (2004)

    Article  MATH  Google Scholar 

  4. Paradis, W., Perlmutter, D.: Tracking function approach to practical stability and ultimate boundedness. AIChE J. 12(1), 130–136 (1966)

    Article  Google Scholar 

  5. Scofield, H.: An estimate of the stable initial condition region based on the describing function. IEEE Trans. Autom. Control 10(4), 484–485 (1965)

    Article  Google Scholar 

  6. Luus, R., Lapidus, L.: An averaging technique for stability analysis. Chem. Eng. Sci. 21(2), 159–181 (1966)

    Article  Google Scholar 

  7. Loparo, K., Blankenship, G.: Estimating the domain of attraction of nonlinear feedback systems. IEEE Trans. Autom. Control 23(4), 602–608 (1978)

    Article  MATH  Google Scholar 

  8. Cruck, E., Moitie, R., Seube, N.: Estimation of basins of attraction for uncertain systems with affine and lipschitz dynamics. Dyn. Control 11(3), 211–227 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  9. Wang, T.-C., Lall, S., West, M.: Polynomial level-set methods for nonlinear dynamical systems analysis. In: Proceedings of Allerton conference on communication, control, and computing, Allerton, IL, (2005)

  10. Genesio, R., Tartaglia, M., Vicino, A.: On the estimation of asymptotic stability regions: state of the art and new proposals. IEEE Trans. Autom. Control 30(8), 747–755 (1985)

  11. Cusumano, J., Kimble, B.: A stochastic interrogation method for experimental measurements of global dynamics and basin evolution: application to a two-well oscillator. Nonlinear Dyn. 8(2), 213–235 (1995)

    Article  Google Scholar 

  12. Zakynthinaki, M.S., Stirling, J.R., Quintana, M.S., Romo, G.R., Molinuevo, J.S.: Modeling the basin of attraction as a two-dimensional manifold from experimental data: applications to balance in humans. Chaos Interdiscip. J. Nonlinear Sci. 20(1), 013119–013119 (2010)

    Article  Google Scholar 

  13. Zakynthinaki, M.S., López, A., Cordente, C.A., Ospina Betancurt, J.A., Quintana, M.S., Sampedro, J.: Detecting changes in the basin of attraction of a dynamical system: application to the postural restoring system. Appl. Math. Comput. 219(17), 8910–8922 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  14. Levin, A.: An analytical method of estimating the domain of attraction for polynomial differential equations. IEEE Trans. Autom. Control 39(12), 2471–2475 (1994)

    Article  MATH  Google Scholar 

  15. Chiang, H.-D., Thorp, J.S.: Stability regions of nonlinear dynamical systems: a constructive methodology. IEEE Trans. Autom. Control 34(12), 1229–1241 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  16. Tibken, B., Fan, Y.: Computing the domain of attraction for polynomial systems via bmi optimization method. In: American control conference, 2006, pp. 6. IEEE (2006)

  17. Chesi, G., Garulli, A., Tesi, A., Vicino, A.: Lmi-based computation of optimal quadratic lyapunov functions for odd polynomial systems. Int. J. Robust Nonlinear Control 15(1), 35–49 (2005)

  18. Balestrino, A., Caiti, A., Crisostomi, E., Grammatico, S.: R-composition of lyapunov functions. In: Control and automation, 2009. MED’09. 17th mediterranean conference, pp. 126–131. IEEE, (2009)

  19. Ohta, Y.: Piecewise linear estimate of attractive regions for linear systems with saturating control. In: Proceedings of AMS (2002)

  20. Milani, B.E.: Piecewise-affine lyapunov functions for discrete-time linear systems with saturating controls. Automatica 38(12), 2177–2184 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  21. Hu, T., Lin, Z.: Properties of the composite quadratic lyapunov functions. IEEE Trans. Autom. Control 49(7), 1162–1167 (2004)

    Article  MathSciNet  Google Scholar 

  22. Chesi, G.: Rational lyapunov functions for estimating and controlling the robust domain of attraction. Automatica 49(4), 1051–1057 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  23. Tibken, B.: Estimation of the domain of attraction for polynomial systems via lmis. In: Proceedings of the 39th IEEE conference on decision and control, 2000, vol. 4, pp. 3860–3864. IEEE (2000)

  24. Hachicho, O., Tibken, B.: Estimating domains of attraction of a class of nonlinear dynamical systems with lmi methods based on the theory of moments. In: Proceedings of the 41st IEEE conference on decision and control, 2002, vol. 3, pp. 3150–3155. IEEE (2002)

  25. Coutinho, D.F., de Souza, C.E., Trofino, A.: Stability analysis of implicit polynomial systems. IEEE Trans. Autom. Control 54(5), 1012–1018 (2009)

    Article  Google Scholar 

  26. Jarvis-Wloszek, Z.W.: Lyapunov based analysis and controller synthesis for polynomial systems using sum-of-squares optimization. PhD thesis, University of California (2003)

  27. Papachristodoulou, A.: Scalable analysis of nonlinear systems using convex optimization. PhD thesis, Citeseer (2005)

  28. Chesi, G. Robust domain of attraction: computing and controlling estimates with non-polynomial lyapunov functions. In: 2012 IEEE International Conference on control applications (CCA), pp. 1086–1091. IEEE (2012.)

  29. Tan, W., Packard, A.: Stability region analysis using polynomial and composite polynomial lyapunov functions and sum-of-squares programming. IEEE Trans. Autom. Control 53(2), 565–571 (2008)

    Article  MathSciNet  Google Scholar 

  30. Sun, Y., Wu, C.Q.: A radial-basis-function network-based method of estimating lyapunov exponents from a scalar time series for analyzing nonlinear systems stability. Nonlinear Dyn. 70(2), 1689–1708 (2012)

    Article  MathSciNet  Google Scholar 

  31. Nusse, H.E., Yorke, J.A., Hunt, B.R.: Dynamics: numerical explorations, vol. 101. Springer, Berlin (1998)

    Book  Google Scholar 

  32. Sun, Y., Wu, C.Q.: Stability analysis via the concept of lyapunov exponents: a case study in optimal controlled biped standing. Int. J. Control 85(12), 1952–1966 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  33. Koop, D., Wu, C.Q.: Passive dynamic biped walking part ii: stability analysis of the passive dynamic gait. ASME Comput. Nonlinear Dyn. 85(12), 1952–1966 (2012)

    Google Scholar 

  34. Wolf, A., Swift, J.B., Swinney, H.L., Vastano, J.A.: Determining lyapunov exponents from a time series. Phys D Nonlinear Phenom 16(3), 285–317 (1985)

  35. Zeng, X., Eykholt, R., Pielke, R.: Estimating the lyapunov-exponent spectrum from short time series of low precision. Phys. Rev. Lett. 66(25), 3229 (1991)

    Article  Google Scholar 

  36. Oseledec, V.I.: A multiplicative ergodic theorem. Lyapunov characteristic numbers for dynamical systems. Trans. Moscow Math. Soc. 19(2), 197–231 (1968)

    MathSciNet  Google Scholar 

  37. Kroese, D.P., Chan, (eds): Common statistical models. In: Statistical Modeling and Computation, pp. 101–120, Springer, New York (2014)

  38. MacKay, D.J.: Introduction to monte carlo methods. In : Jordan, M.I. (ed.) Learning in Graphical Models, pp. 175–204, Springer, The Netherlands (1998)

  39. Bishop, C.M., Nasrabadi, N.M.: Pattern recognition and machine learning, vol. 1. Springer, New York (2006)

    MATH  Google Scholar 

  40. Carter, L.L., Cashwell, E.D.: Particle-transport simulation with the monte carlo method. Technical report, Los Alamos Scientific Lab, N. Mex. (USA) (1975)

  41. Andrieu, C., De Freitas, N., Doucet, A., Jordan, M.I.: An introduction to mcmc for machine learning. Mach. Learn. 50(1–2), 5–43 (2003)

    Article  MATH  Google Scholar 

  42. Lin, C.-F., Wang, S.-D.: Fuzzy support vector machines. IEEE Trans. Neural Netw. 13(2), 464–471 (2002)

    Article  Google Scholar 

  43. Joachim, T.: Text categorization with support vector machines: Learning with many relevant features. Springer, Berlin (1998)

    Google Scholar 

  44. Suykens, J.A., Vandewalle, J.: Least squares support vector machine classifiers. Neural Process. Lett. 9(3), 293–300 (1999)

    Article  MathSciNet  Google Scholar 

  45. Campbell, W.M., Sturim, D.E., Reynolds, D.A.: Support vector machines using gmm supervectors for speaker verification. Signal Process. Lett. IEEE 13(5), 308–311 (2006)

    Article  Google Scholar 

  46. Cristianini, N., Shawe-Taylor, J.: An introduction to support vector machines and other kernel-based learning methods. Cambridge University Press, UK (2000)

  47. Platt, J., et al.: Sequential minimal optimization: a fast algorithm for training support vector machines. Technical report msr-tr-98-14, Microsoft Research (1998)

  48. Fan, R.-E., Chen, P.-H., Lin, C.-J.: Working set selection using second order information for training support vector machines. J. Mach. Learn. Res. 6, 1889–1918 (2005)

  49. Bottou, L., Lin, C.-J.: Support vector machine solvers. In: Large Scale Kernel Machines. MIT Press, Cambridge, MA (2007)

  50. Perko, L.: Differential equations and dynamical systems. Texts in applied mathematics. Springer, Berlin (1991)

  51. KuznetÍsov, I.: Elements of Applied Bifurcation Theory, Vol. 112. Springer, New York (1998)

  52. Feng, Z.: Exact solutions to the liénard equation and its applications. Chaos, Solitons & Fractals 21(2), 343–348 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  53. “Wikipedia”, August 2013

  54. Pacejka, H.: Tyre and Vehicle Dynamics. Elsevier, Amsterdam (2005)

  55. Gillespie, T.D.: Fundamentals of vehicle dynamics (r-114). SAE International (1992)

  56. Goodarzi, A., Armion, A.: Integrated fuzzy-optimal motorcycle dynamic control. Veh. Syst. Dyn. 48(S1), 505–524 (2010)

    Article  Google Scholar 

  57. Mashadi, B., Majidi, M., Dizaji, H.P.: Optimal vehicle dynamics controller design using a four-degrees-of-freedom model. Proc. Inst. Mech. Eng. D J. Autom. Eng. 224(5), 645–659 (2010)

    Article  Google Scholar 

  58. Pham, D., Otri, S., Afify, A., Mahmuddin, M., Al-Jabbouli, H.: Data clustering using the bees algorithm . In: Proceedings of 40th CIRP International Manufacturing Systems Seminar (2007)

  59. Dahlquist, G., Björck, Å.: Numerical methods in scientific computing, vol. i. SIAM, Philadelphia (2007)

    Google Scholar 

  60. Ko, Y.E., Lee, J.M.: Estimation of the stability region of a vehicle in plane motion using a topological approach. Int. J. Vehicle Des. 30(3), 181–192 (2002)

    Article  Google Scholar 

  61. Ko, Y., Song, C.: Vehicle modeling with nonlinear tires for vehicle stability analysis. Int. J. Autom. Technol. 11(3), 339–344 (2010)

    Article  Google Scholar 

  62. Jensen, J.S.: Non-linear dynamics of the follower-loaded double pendulum with added support-excitation. J. Sound Vib. 215(1), 125–142 (1998)

    Article  Google Scholar 

  63. Thomson, J.: Chaotic dynamics of the partially follower-loaded elastic double pendulum. J. Sound Vib. 188(3), 385–405 (1995)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christine Q. Wu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Armiyoon, A.R., Wu, C.Q. A novel method to identify boundaries of basins of attraction in a dynamical system using Lyapunov exponents and Monte Carlo techniques. Nonlinear Dyn 79, 275–293 (2015). https://doi.org/10.1007/s11071-014-1663-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-014-1663-z

Keywords

Navigation