Skip to main content
Log in

Adaptive backstepping control of wheeled inverted pendulums models

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper, the state feedback control of wheeled inverted pendulum (WIP) used for mobile transportation has been investigated. The dynamic unstable balance and nonholonomic constraints inherent degrade the performance when the WIP operates in path-following mode. Through a suitable coordinates transformation, the WIP model is formulated into a parametric strict feedback form. Then, backstepping-based adaptive control is designed to achieve output tracking for the WIP. Simulation results are provided to show the effectiveness of the control proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Chiu, C.-H.: The design and implementation of a wheeled inverted pendulum using an adaptive output recurrent cerebellar model articulation controller. IEEE Trans. Industr. Electron. 57(5), 1814–1822 (2010)

    Article  Google Scholar 

  2. Li, Z., Kang, Y.: Dynamic coupling switching control incorporating support vector machines for wheeled mobile manipulators with hybrid joints. Automatica 46(5), 832–842 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  3. Kim, Y., Kim, S.H., Kwak, Y.K.: Dynamic analysis of a nonholonomic two-wheeled inverted pendulum robot. J. Intell. Robot. Syst. 44(1), 25–46 (2005)

    Article  Google Scholar 

  4. Grasser, F., D’Arrigo, A., Colombi, S., Rufer, A.C.: Joe: a mobile, inverted pendulum. IEEE Trans. Ind. Electron. 49(1), 107–114 (2002)

    Article  Google Scholar 

  5. Pathak, K., Franch, J., Agrawal, S.K.: Velocity and position control of a wheeled inverted pendulum by partial feedback linearization. IEEE Trans. Robot. 21(3), 505–513 (2005)

    Article  Google Scholar 

  6. Huang, J., Wang, H., Matsuno, T., Fukuda, T., Sekiyama, K.: Robust velocity sliding mode control of mobile wheeled inverted pendulum systems. In: Proceedings of 2009 IEEE International Conference on Robotics and Automation, ICRA’09, pp. 2983–2988. IEEE (2009)

  7. Li, Z., Yang, C.: Neural-adaptive output feedback control of a class of transportation vehicles based on wheeled inverted pendulum models. IEEE Trans. Control Syst. Technol. 20(6), 1583–1591 (2012)

    Article  Google Scholar 

  8. Fierro, R., Lewis, F.L.: Control of a nonholonomic mobile robot using neural networks. IEEE Trans. Neural Netw. 9(4), 589–600 (1998)

    Article  Google Scholar 

  9. Huang, J., Guan, Z.-H., Matsuno, T., Fukuda, T., Sekiyama, K.: Sliding-mode velocity control of mobile-wheeled inverted-pendulum systems. IEEE Trans. Robot. 26(4), 750–758 (2010)

    Article  Google Scholar 

  10. Li, Z., Yang, C., Fan, L.: Advanced Control of Wheeled Inverted Pendulum Systems. Springer Publishing Company, Incorporated, Berlin (2013)

  11. Huang, C.-H., Wang, W.-J., Chiu, C.-H.: Design and implementation of fuzzy control on a two-wheel inverted pendulum. IEEE Trans. Ind. Electron. 58(7), 2988–3001 (2011)

    Article  Google Scholar 

  12. Liu, Y.-J., Chen, C.L.P., Wen, G.-X., Tong, S.-C.: Adaptive neural output feedback tracking control for a class of uncertain discrete-time nonlinear systems. IEEE Trans. Neural Netw. 22(7), 1162–1167 (2011)

    Article  Google Scholar 

  13. Takei, T., Imamura, R., Yuta, S.: Baggage transportation and navigation by a wheeled inverted pendulum mobile robot. IEEE Trans. Ind. Electron. 56(10), 3985–3994 (2009)

    Article  Google Scholar 

  14. Yang, C.: Trajectory planning and optimized adaptive control for a class of wheeled inverted pendulum vehicle models. IEEE Trans. Cybern. 43(1), 24–36 (2013)

    Article  Google Scholar 

  15. Li, Z., Xia, Y., Sun, F.: Adaptive fuzzy control for multilateral cooperative teleoperation of multiple robotic manipulators under random network-induced delays. IEEE Trans. Fuzzy Syst. 22(2), 437–450 (2014)

  16. Li, Z.: Adaptive fuzzy output feedback motion/force control for wheeled inverted pendulums. IET Control Theory Appl. 5(10), 1176–1188 (2011)

    Article  MathSciNet  Google Scholar 

  17. Reyhanoglu, M., van der Schaft, A., McClamroch, N.H., Kolmanovsky, I.: Dynamics and control of a class of underactuated mechanical systems. IEEE Trans. Autom. Control 44(9), 1663–1671 (1999)

    Article  MATH  Google Scholar 

  18. Sampei, M., Tamura, T., Kobayashi, T., Shibui, N.: Arbitrary path tracking control of articulated vehicles using nonlinear control theory. IEEE Trans. Control Syst. Technol. 3(1), 125–131 (1995)

    Article  Google Scholar 

  19. Acosta, J.A., Ortega, R., Astolfi, A., Mahindrakar, A.D.: Interconnection and damping assignment passivity-based control of mechanical systems with underactuation degree one. IEEE Trans. Autom. Control 50(12), 1936–1955 (2005)

    Article  MathSciNet  Google Scholar 

  20. Grizzle, J.W., Moog, C.H., Chevallereau, C.: Nonlinear control of mechanical systems with an unactuated cyclic variable. IEEE Trans. Autom. Control 50(5), 559–576 (2005)

    Article  MathSciNet  Google Scholar 

  21. Lin, W., Pongvuthithum, R., Qian, C.: Control of high-order nonholonomic systems in power chained form using discontinuous feedback. IEEE Trans. Autom. Control 47(1), 108–115 (2002)

    Article  MathSciNet  Google Scholar 

  22. Nakamura, Y., Mukherjee, R.: Nonholonomic path planning of space robots via a bidirectional approach. IEEE Trans. Robot. Autom. 7(4), 500–514 (1991)

    Article  Google Scholar 

  23. Papadopoulos, E.: Path planning for space manipulators exhibiting nonholonomic behavior. In: Proceedings of the International Conference on Intelligent Robots and Systems, pp. 7–10 (1992)

  24. Guenard, N., Hamel, T., Mahony, R.: A practical visual servo control for an unmanned aerial vehicle. IEEE Trans. Robot. 24(2), 331–340 (2008)

    Article  Google Scholar 

  25. Liljeback, P., Haugstuen, I.U., Pettersen, K.Y.: Path following control of planar snake robots using a cascaded approach. IEEE Trans. Control Syst. Technol. 20(1), 111–126 (2012)

    Google Scholar 

  26. Chen, M., Ge, S.S.: Direct adaptive neural control for a class of uncertain non-affine nonlinear systems based on disturbance observer. IEEE Trans. Cybern. 43(4), 1213–1225 (2013)

  27. Yang, C., Ganesh, G., Haddadin, S., Parusel, S., Albu-Schaeffer, A., Burdet, E.: Human-like adaptation of force and impedance in stable and unstable interactions. IEEE Trans. Robot. 27(5), 918–930 (2011)

    Article  Google Scholar 

  28. Crespi, A., Lachat, D., Pasquier, A., Ijspeert, A.J.: Controlling swimming and crawling in a fish robot using a central pattern generator. Auton. Robots 25(1–2), 3–13 (2008)

    Article  Google Scholar 

  29. Zhang, M., Tarn, T.-J.: Hybrid control of the pendubot. IEEE/ASME Trans. Mechatron. 7(1), 79–86 (2002)

    Article  Google Scholar 

  30. Salerno, A., Angeles, J.: The control of semi-autonomous two-wheeled robots undergoing large payload-variations. In: Proceedings of the IEEE International Conference on Robotics and Automation, 2004. ICRA’04. 2004, vol. 2, pp. 1740–1745. IEEE (2004)

  31. Blankespoor, A., Roemer, R.: Experimental verification of the dynamic model for a quarter size self-balancing wheelchair. In: Proceedings of the 2004 American Control Conference, 2004, vol. 1, pp. 488–492. IEEE (2004)

  32. Liu, Y.-J., Tong, S.-C., Chen, C.L.P.: Adaptive fuzzy control via observer design for uncertain nonlinear systems with unmodeled dynamics. IEEE Trans. Fuzzy Syst. 21(2), 275–288 (2013)

    Article  Google Scholar 

  33. Chen, M., Ge, S.S., Voon Ee How, B.: Robust adaptive neural network control for a class of uncertain mimo nonlinear systems with input nonlinearities. IEEE Trans. Neural Netw. 21(5), 796–812 (2010)

    Article  Google Scholar 

  34. Liu, Y.-J., Li, Y.-X.: Adaptive fuzzy output-feedback control of uncertain siso nonlinear systems. Nonlinear Dyn. 61(4), 749–761 (2010)

    Article  MATH  Google Scholar 

  35. Li, Z., Yang, C., Su, C.-Y., Ye, W.: Adaptive fuzzy-based motion generation and control of mobile under-actuated manipulators. Eng. Appl. Artif. Intell. 30, 86–95 (2014)

  36. Yang, C., Ma, H., Fu, M.: Adaptive predictive control of periodic non-linear auto-regressive moving average systems using nearest-neighbour compensation. IET Control Theory Appl. 7(7), 936–951 (2013)

  37. Chen, M., Wu, Q., Jiang, C.: Disturbance-observer-based robust synchronization control of uncertain chaotic systems. Nonlinear Dyn. 70(4), 2421–2432 (2012)

    Article  MathSciNet  Google Scholar 

  38. Li, Z., Zhang, Y.: Robust adaptive motion/force control for wheeled inverted pendulums. Automatica 46(8), 1346–1353 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  39. Yang, C., Li, Z., Cui, R., Xu, B.: Neural network-based motion control of an underactuated wheeled inverted pendulum model. IEEE Trans. Neural Netw. Learn. Syst. (2014). doi:10.1109/TNNLS.2014.2302475

  40. Chiu, C.-H., Lin, Y.-W., Lin, C.-H.: Real-time control of a wheeled inverted pendulum based on an intelligent model free controller. Mechatronics 21(3), 523–533 (2011)

    Article  Google Scholar 

  41. Chiu, C.-H.: Self-tuning output recurrent cerebellar model articulation controller for a wheeled inverted pendulum control. Neural Comput. Appl. 19(8), 1153–1164 (2010)

    Article  Google Scholar 

  42. Li, Z., Zhang, Y., Yang, Y.: Support vector machine optimal control for mobile wheeled inverted pendulums with unmodelled dynamics. Neurocomputing 73(13), 2773–2782 (2010)

    Article  Google Scholar 

  43. Krstic, M., Kanellakopoulos, I., Kokotovic, P.V., et al.: Nonlinear and Adaptive Control Design. Wiley, New York (1995)

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank Professor Zhijun Li and Professor Chenguang Yang for their guidance and constructive comments for preparation of this paper, thank the editor and anonymous reviewers for their constructive suggestions and comments. This work was supported by the National Natural Science Foundation of China (NSFC) under Grant 51209174, 61472325 and 51311130137, the Fundamental Research Program of Northwestern Polytechnical University (NPU) under Grant JCY20130113, and the State Key Laboratory of Robotics and System (HIT) under Grant SKLRS-2012-MS- 04.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rongxin Cui.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cui, R., Guo, J. & Mao, Z. Adaptive backstepping control of wheeled inverted pendulums models. Nonlinear Dyn 79, 501–511 (2015). https://doi.org/10.1007/s11071-014-1682-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-014-1682-9

Keywords

Navigation