Skip to main content
Log in

Identification of Hammerstein nonlinear ARMAX systems using nonlinear adaptive algorithms

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this study, a novel adaptive strategy is designed based on fractional least mean square (LMS) algorithm for parameter estimation of Hammerstein nonlinear autoregressive moving average system with exogenous noise (HN-ARMAX). The design scheme consists of parameterization of HN-ARMAX systems to obtain linear-in-parameter models and to use fractional LMS algorithm for adapting unknown parameter vectors. The performance analysis of the proposed method is carried out based on convergence to the desired values of HN-ARMAX systems, and comparison is made with state-of-the-art kernel LMS and Volterra LMS algorithms. The consistency in terms of accuracy and convergence is established through the results of statistical analysis based on sufficient large number of independent runs rather than single successful run of the algorithm. The performance of proposed scheme is superior due to its strong mathematical foundations, nonlinear weight updating mechanism and more convergence controlling variables but at the cost of bit more computational requirements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Chen, J., Zhang, Y., Ding, R.: Gradient-based parameter estimation for input nonlinear systems with ARMA noises based on the auxiliary model. Nonlinear Dyn. 72(4), 865–871 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  2. Han, H., Xie, L., Ding, F., Liu, X.: Hierarchical least-squares based iterative identification for multivariable systems with moving average noises. Math. Comput. Model. 51(9), 1213–1220 (2010)

    Article  MATH  Google Scholar 

  3. Zhou, L., Li, X., Pan, F.: Gradient-based iterative identification for Wiener nonlinear systems with non-uniform sampling. Nonlinear Dyn. 76(1), 627–634 (2014)

    Article  MathSciNet  Google Scholar 

  4. Xiao, Y., Zhang, Y., Ding, J., Dai, J.: The residual based interactive least squares algorithms and simulation studies. Comput. Math. Appl. 58(6), 1190–1197 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  5. Wang, C., Tang, T.: Several gradient-based iterative estimation algorithms for a class of nonlinear systems using the filtering technique. Nonlinear Dyn. 77(3), 769–780 (2014)

  6. Ding, F., Liu, P.X., Liu, G.: Gradient based and least-squares based iterative identification methods for OE and OEMA systems. Digit. Signal Process. 20(3), 664–677 (2010)

    Article  Google Scholar 

  7. Li, X., Zhou, L., Sheng, J., Ding, R.: Recursive least squares parameter estimation algorithm for dual-rate sampled-data nonlinear systems. Nonlinear Dyn. 76(2), 1327–1334 (2014)

  8. Ding, F.: Two-stage least squares based iterative estimation algorithm for CARARMA system modeling. Appl. Math. Model. 37(7), 4798–4808 (2013)

    Article  MathSciNet  Google Scholar 

  9. Hu, P., Ding, F.: Multistage least squares based iterative estimation for feedback nonlinear systems with moving average noises using the hierarchical identification principle. Nonlinear Dyn. 73(1–2), 583–592 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  10. Ding, F., Chen, T.: Identification of Hammerstein nonlinear ARMAX systems. Automatica 41(9), 1479–1489 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  11. Ding, F., Deng, K., Liu, X.: Decomposition based Newton iterative identification method for a Hammerstein nonlinear FIR system with ARMA noise. Circuits Syst. Signal Process. 33(9), 2881–2893 (2014)

    Article  MathSciNet  Google Scholar 

  12. Ding, F., Liu, X., Chu, J.: Gradient-based and least-squares-based iterative algorithms for Hammerstein systems using the hierarchical identification principle. IET Control Theory Appl. 7(2), 176–184 (2013)

    Article  MathSciNet  Google Scholar 

  13. Karimi-Ghartemani, M., Iravani, M.R.: A nonlinear adaptive filter for online signal analysis in power systems: applications. IEEE Trans. Power Deliv. 17(2), 617–622 (2002)

    Article  Google Scholar 

  14. Cao, Y.Y., Lin, Z.: Robust stability analysis and fuzzy-scheduling control for nonlinear systems subject to actuator saturation. IEEE Trans. Fuzzy Syst. 11(1), 57–67 (2003)

    Article  Google Scholar 

  15. Hunter, I.W., Korenberg, M.J.: The identification of nonlinear biological systems: Wiener and Hammerstein cascade models. Biol. Cybern. 55(2–3), 135–144 (1986)

    MATH  MathSciNet  Google Scholar 

  16. Fruzzetti, K.P., Palazoğlu, A., McDonald, K.A.: Nolinear model predictive control using Hammerstein models. J. Process Control 7(1), 31–41 (1997)

    Article  Google Scholar 

  17. Dupont, S., Luettin, J.: Audio-visual speech modeling for continuous speech recognition. IEEE Trans. Multimed. 2(3), 141–151 (2000)

    Article  Google Scholar 

  18. Hu, H., Ding, R.: Least squares based iterative identification algorithms for input nonlinear controlled autoregressive systems based on the auxiliary model. Nonlinear Dyn. 76(1), 777–784 (2014)

    Article  MathSciNet  Google Scholar 

  19. Wang, D., Chu, Y., Ding, F.: Auxiliary model-based RELS and MI-ELS algorithm for Hammerstein OEMA systems. Comput. Math. Appl. 59(9), 3092–3098 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  20. Wang, D., Ding, F., Liu, X.M.: Least squares algorithm for an input nonlinear system with a dynamic subspace state space model. Nonlinear Dyn. 75(1–2), 49–61 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  21. Ding, F.: Hierarchical estimation algorithms for multivariable systems using measurement information. Inf. Sci. 277, 396–405 (2014)

    Article  Google Scholar 

  22. Ding, F.: State filtering and parameter estimation for state space systems with scarce measurements. Signal Process. 104, 369–380 (2014)

    Article  Google Scholar 

  23. Liu, Y., Ding, F., Shi, Y.: An efficient hierarchical identification method for general dual-rate sampled-data systems. Automatica 50(3), 962–970 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  24. Ding, F., Liu, X.P., Liu, G.: Identification methods for Hammerstein nonlinear systems. Digit. Signal Process. 21(2), 215–238 (2011)

    Article  Google Scholar 

  25. Shen, Q., Ding, F.: Iterative estimation methods for Hammerstein controlled autoregressive moving average systems based on the key-term separation principle. Nonlinear Dyn. 75(4), 709–716 (2014)

    Article  MATH  Google Scholar 

  26. Ding, F., Shi, Y., Chen, T.: Gradient-based identification methods for Hammerstein nonlinear ARMAX models. Nonlinear Dyn. 45(1–2), 31–43 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  27. Sabatier, J., Aoun, M., Oustaloup, A., Grégoire, G., Ragot, F., Roy, P.: Fractional system identification for lead acid battery state of charge estimation. Signal Process. 86(10), 2645–2657 (2006)

    Article  MATH  Google Scholar 

  28. Mandelbrot, B.B., Van Ness, J.W.: Fractional Brownian motions, fractional noises and applications. SIAM Rev. 10(4), 422–437 (1968)

    Article  MATH  MathSciNet  Google Scholar 

  29. Valério, D., Ortigueira, M.D., da Costa, J.S.: Identifying a transfer function from a frequency response. J. Comput. Nonlinear Dyn. 3(2), 021207 (2008)

    Article  Google Scholar 

  30. Aslam, M.S., Raja, M.A.Z.: A new adaptive strategy to improve online secondary path modeling in active noise control systems using fractional signal processing approach. Signal Process. (2014). doi:10.1016/j.sigpro.2014.04.012

  31. Chaudhary, N.I., Raja, M.A.Z., Khan, J.A., Aslam, M.S.: Identification of input nonlinear control autoregressive systems using fractional signal processing approach. Sci. World J. 1–13 (2013). doi:10.1155/2013/467276

  32. Raja, M.A.Z., Chaudhary, N.I.: Two-stage fractional least mean square identification algorithm for parameter estimation of CARMA systems. Signal Process. (2014). doi:10.1016/j.sigpro.2014.06.015

  33. Pokharel, P.P., Liu, W., Principe, J.C.: Kernel LMS. In: IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2007, vol. 3 (2007)

  34. Liu, W., Pokharel, P.P., Principe, J.C.: The kernel least-mean-square algorithm. IEEE Trans. Signal Process. 56(2), 543–554 (2008)

  35. Sadoghi Yazdi, H., Pakdaman, M., Modaghegh, H.: Unsupervised kernel least mean square algorithm for solving ordinary differential equations. Neurocomputing 74(12), 2062–2071 (2011)

    Article  Google Scholar 

  36. Bouboulis, P., Theodoridis, S., Mavroforakis, M.: The augmented complex kernel LMS. IEEE Trans. Signal Process. 60(9), 4962–4967 (2012)

    Article  MathSciNet  Google Scholar 

  37. Singh, S.D., Chatterjee, A.: A comparative study of adaptation algorithms for nonlinear system identification based on second order Volterra and bilinear polynomial filters. Measurement 44(10), 1915–1923 (2011)

    Article  Google Scholar 

  38. Zhou, D., DeBrunner, V.: Efficient adaptive nonlinear filters for nonlinear active noise control. IEEE Trans. Circuits Syst. I: Regul. Pap. 54(3), 669–681 (2007)

    Article  Google Scholar 

  39. Tan, L., Jiang, J.: Adaptive Volterra filters for active control of nonlinear noise processes. IEEE Trans. Signal Process. 49(8), 1667–1676 (2001)

    Article  Google Scholar 

  40. Benedetto, S., Biglieri, E.: Nonlinear equalization of digital satellite channels. IEEE J. Sel. Areas Commun. 1(1), 57–62 (1983)

    Article  Google Scholar 

  41. Guérin, A., Faucon, G., Bouquin-Jeannes, L.: Nonlinear acoustic echo cancellation based on Volterra filters. IEEE Trans. Speech Audio Process. 11(6), 672–683 (2003)

    Article  Google Scholar 

  42. Clarkson, P.M., Dokic, M.V.: Stability and convergence behaviour of second-order LMS Volterra filter. Electr. Lett. 27(5), 441–443 (1991)

    Article  Google Scholar 

  43. Xinling, W., Yi, R., Yu, C.: Exploration and Research of Volterra Adaptive Filter Algorithm in Non-linear System Identification. Information and Management Engineering. Springer, Berlin (2011)

    Google Scholar 

  44. Haykin, S.: Adaptive Filter Theory, 5th edn revised. Pearson Education, Limited, India (2013)

  45. Podlubny, I.: Fractional Differential Equations. Academic Press, New York (1999)

    MATH  Google Scholar 

  46. Anatoly, A.K., Hari M.S., Juan J.T.: Theory and Applications of Fractional Differential Equations, North Holland Mathematics Studies, vol. 204, Elsevier, New York (2006)

  47. Oldham, K.B., Spanier, J.: The Fractional Calculus-Theory and Applications of Differentiation and Integration to Arbitrary Order. Academic Press, London and New York (1974)

  48. Zahoor, R.M.A., Qureshi, I.M.: A modified least mean square algorithm using fractional derivative and its application to system identification. Eur. J. Sci. Res. 35(1), 14–21 (2009)

  49. Raja, M.A.Z.: Application of Fractional Calculus to Engineering: Anew Computational Approach. Dissertation International Islamic University, Islamabad (2011)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Asif Zahoor Raja.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chaudhary, N.I., Raja, M.A.Z. Identification of Hammerstein nonlinear ARMAX systems using nonlinear adaptive algorithms. Nonlinear Dyn 79, 1385–1397 (2015). https://doi.org/10.1007/s11071-014-1748-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-014-1748-8

Keywords

Navigation