Skip to main content
Log in

Solitary waves solutions of singularly perturbed higher-order KdV equation via geometric singular perturbation method

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper, we are concerned with a singularly perturbed higher-order KdV equation, which is considered as a paradigm in nonlinear science and has many applications in weakly nonlinear and weakly dispersive physical systems. Based on the relation between solitary wave solution and homoclinic orbits of the associated ordinary differential equations, the persistence of the solitary wave solution for the singularly perturbed KdV equation is investigated by using the geometric singular perturbation theory and dynamical systems approach when the perturbation parameter is suitably small.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Polyanin, A.D., Zaitsev, V.F.: Handbook of Nonlinear Partial Differential Equations. CRC Press, Boca Raton (2003)

    Book  Google Scholar 

  2. Johnson, R.S.: A Modern Introduction to the Mathematical Theory of Water Waves. Cambridge University Press, Cambridge (1997)

    Book  MATH  Google Scholar 

  3. Ablowitzand, M.A., Clarkson, P.A.: Solitons, Nonlinear Evolution Equations and Inverse Scattering. Cambridge University Press, Cambridge (1991)

    Book  Google Scholar 

  4. Korteweg, D.J., de Vries, G.: On the change of form of long waves advancing in a rectangular channel, and on a new type of long stationary waves. Philos. Mag. 39, 422–443 (1895)

    Article  MATH  Google Scholar 

  5. Zabusky, N.J., Kruskal, M.D.: Interaction of solitons in a collisionless plasma and the recurrence of initial states. Phys. Rev. Lett. 15, 240–243 (1965)

    Article  MATH  Google Scholar 

  6. Feng, Z.: On traveling wave solutions of the Burgers–Korteweg–de Vries equation. Nonlinearity 20, 343–356 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  7. Fenichel, N.: Geometric singular perturbation theory for ordinary differential equations. J. Differ. Equ. 31, 53–98 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  8. Jones, C.K.R.T.: Geometrical singular perturbation theory. In: Johnson, R. (ed.) Dynamical Systems, Lecture Notes in Mathematics, vol. 1609. Springer, New York (1995)

  9. Shen, J., et al.: Traveling wave solutions in the generalized Hirota–Satsuma coupled KdV system. Appl. Math. Comput. 161, 365–383 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  10. Wen, X., Gao, Y., Wang, L.: Darboux transformation and explicit solutions for the integrable sixth-order KdV equation for nonlinear waves. Appl. Math. Comput. 218, 55–60 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  11. Li, X., Wang, M.: A sub-ODE method for finding exact solutions of a generalized KdV–mKdV equation with high-order nonlinear terms. Phys. Lett. A. 361, 115–118 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  12. Zhang, Y., Song, Y., Cheng, L., et al.: Exact solutions and Painleve analysis of a new (2+1)-dimensional generalized KdV equation. Nonlinear Dyn. 68, 445–458 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  13. Huang, Y.: Exact multi-wave solutions for the KdV equation. Nonlinear Dyn. 77, 437–444 (2014)

    Article  Google Scholar 

  14. Sarma, J.: Solitary wave solution of higher-order Korteweg–de Vries equation. Chaos Solitons Fract. 39, 277–281 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  15. Zhao, Z.: Solitary waves of the generalized KdV equation with distributed delays. J. Math. Anal. Appl. 344, 32–41 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  16. Zhao, Z., Xu, Y.: Solitary waves for Korteweg–de Vries equation with small delay. J. Math. Anal. Appl. 368, 43–53 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  17. Abbasband, S.: Solitary wave solutions to the Kuramoto–Sivashinsky equation by means of the homotopy analysis method. Nonlinear Dyn. 52, 35–40 (2008)

    Article  Google Scholar 

  18. Biswas, A.: Solitary wave solution for KdV equation with power-law nonlinearity and time-dependent coefficients. Nonlinear Dyn. 58, 345–348 (2009)

    Article  MATH  Google Scholar 

  19. Du, Z., Wei, D., Xu, Y.: Solitary wave solutions for a generalized KdV–mKdV equation with distributed delays. Nonlinear Anal. Model. Control 19, 551–564 (2014)

    MathSciNet  Google Scholar 

  20. Ou, C., Wu, J.: Persistence of wavefronts in delayed nonlocal reaction–diffusion equations. J. Differ. Equ. 238, 219–261 (2007)

    Article  MathSciNet  Google Scholar 

  21. Bose, A.: A geometric approach to singularly perturbed nonlocal reaction–diffusion equation. SIAM J. Math. Anal. 31, 431–455 (2000)

    Article  MATH  Google Scholar 

  22. Song, Y., Peng, Y., Han, M.: Travelling wavefronts in the diffusive single species model with allee effect and distributed delay. Appl. Math. Comput. 152, 483–98 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  23. Ogawa, T.: Travelling wave solutions to a perturbed Korteweg–de Vries equation. Hiroshima J. Math. 24, 401–422 (1994)

  24. Hai, W., Xiao, Y.: Soliton solution of a singularly perturbed KdV equation. Phys. Lett. A 208, 79–83 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  25. Herman, R.L.: Resolution of the motion of a perturbed KdV soliton. Inverse Probl. 6, 43–54 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  26. Antonova, M., Biswas, A.: Adiabatic parameter dynamics of perturbed solitary waves. Commun. Nonlinear Sci. Numer. Simul. 14, 734–748 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  27. Mansour, M.B.A.: Travelling wave solutions for a singularly perturbed Burgers-KdV equation. Pramana J. Phys. 73, 799–806 (2009)

  28. Mansour, M.B.A.: A geometric construction of traveling waves in a generalized nonlinear dispersive–dissipative equation. J. Geom. Phys. 69, 116–122 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  29. Fan, X., Tian, L.: The existence of solitary waves of singularly perturbed mKdV–KS equation. Chaos Solitons Fract. 26, 1111–1118 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  30. Tang, Y., Xu, W.: Persistence of solitary wave solutions of singularly perturbed Gardner equation. Chaos Solitons Fract. 37, 532–538 (2008)

  31. Guo, B., Chen, H.: Homoclinic orbit in a six-dimensional model of a perturbed order nonlinear SchrÖdinger equation. Commun Nonlinear Sci. Numer. Simul. 9, 431–42 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  32. Tao, T.: Scattering for the quartic generalized Korteweg–de Vries equation. J. Differ. Equ. 232, 623–651 (2007)

    Article  MATH  Google Scholar 

  33. Kenig, C.E., Ponce, G., Vega, L.: Well-posedness and scattering results for the generalized Korteweg–de Vries equation via the contraction principle. Commun. Pure Appl. Math. 46, 527–620 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  34. Escauriaza, L., Kenig, C.E., Ponce, G., et al.: On uniqueness properties of solutions of the \(k\)-generalized KdV equations. J. Funct. Anal. 244, 504–535 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  35. Liu, Z., Yang, C.: The application of bifurcation method to a higher-order KdV equation. J. Math. Anal. Appl. 275, 1–12 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  36. Camassa, R., Kovacic, G., Tin, S.: A Melnikov Method for Homoclinic Orbits with Applications. Springer, New York (1996)

    Google Scholar 

Download references

Acknowledgments

This work is supported by the Natural Science Foundation of China (Grant No. 11471146), PAPD of Jiangsu Higher Education Institutions and postgraduate training project of Jiangsu Province and Jiangsu Normal University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zengji Du.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhuang, K., Du, Z. & Lin, X. Solitary waves solutions of singularly perturbed higher-order KdV equation via geometric singular perturbation method. Nonlinear Dyn 80, 629–635 (2015). https://doi.org/10.1007/s11071-015-1894-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-015-1894-7

Keywords

Mathematics Subject Classification

Navigation