Skip to main content
Log in

On the stability of a class of nonlinear control systems

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper, the stability of a class of nonlinear control systems is analyzed. This class of systems is first converted into the equivalent affine control systems using the linear combination property of intervals where it is utilized to convert the nonlinear control systems into the equivalent linear control systems in works (Noori Skandari and Tohidi in Appl Math 2:646–652, 2011; Erfanian et al. in Int J Sens Comput Control 1(2):117–124, 2011; Tohidi and Noori Skandari in J Comput Model 1(2):145–156, 2011). Then to analyze the stability of the obtained affine control system, two analytical approaches based on the scalar and vector control Lyapunov functions are utilized and a control stabilizer is constructed. Finally, the results are simulated in some examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Noori Skandari, M.H., Tohidi, E.: Numerical solution of a class of nonlinear optimal control problems using linearization and discretization. Appl. Math. 2, 646–652 (2011)

    Article  MathSciNet  Google Scholar 

  2. Erfanian, H.R., Noori Skandari, M.H., Kamyad, A.V.: Solving a class of separated continuous programming problems using linearization and discretization. Int. J. Sens. Comput. Control 1(2), 117–124 (2011)

    Google Scholar 

  3. Tohidi, E., Noori Skandari, M.H.: A new approach for a class of nonlinear optimal control problems using linear combination property of intervals. J. Comput. Model. 1(2), 145–156 (2011)

    MATH  Google Scholar 

  4. Lyapunov, A.M.: The General Problem of the Stability of Motion. Kharkov Mathematical Society, Kharkov, Russia (1892)

    Google Scholar 

  5. Artstein, Z.: Stabilization with relaxed controls. Nonlinear Anal. 15(11), 1163–1173 (1983)

    Article  MathSciNet  Google Scholar 

  6. Freeman, R., Kokotovic, P.: Optimal nonlinear controllers for feedback linearizable systems, pp. 2722–2726. In: Proceedings of the American Control Conference, Seattle, Washington (1995)

  7. Freeman, R., Kokotovic, P.: Robust Nonlinear Control Design. Birkhäuser, Boston (1996)

    Book  MATH  Google Scholar 

  8. Freeman, R., Primbs, J.: Control Lyapunov functions: new ideas from and old source. In: Proceedings of the 35th IEEE Conference Decision and Control, pp. 3926–3931. Kobe, Japan (1996)

  9. Krstic, M., Kanellakopoulos, I., Kokotovic, P.: Nonlinear and Adaptive Control Design. Wiley, New York (1995)

    Google Scholar 

  10. Sontag, E.D.: A Lyapunov-like characterization of asymptotic controllability. SIAM J. Control Optim. 21(3), 462–471 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  11. Sontag, E.D.: A ‘Universal’ Construction of Artstein’s theorem on nonlinear stabilization. Syst. Control Lett. 13(2), 117–123 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  12. Primbs, J.A., Nevistic, V., Doyle, J.C.: Nonlinear optimal control: a Lyapunov function and receding horizon perspective. Asian J. Control 1(1), 14–24 (1999)

    Article  Google Scholar 

  13. Tsinias, J.: Existence of control Lyapunov functions and applications to state feedback stabilizability of nonlinear systems. SIAM J. Control Optim. 29, 457–473 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  14. Jurdjevic, V., Quinn, J.P.: Controllability and stability. J. Diff. Equ. 28, 381–389 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  15. Nersesov, S.G., Haddad, W.M.: On the stability and control of nonlinear dynamical systems via vector Lyapunov functions. IEEE Trans. Autom. Control 51(2), 203–215 (2006)

    Article  MathSciNet  Google Scholar 

  16. Bellman, R.: Vector Lyapunov functions. SIAM J. Control 1, 32–34 (1962)

    MATH  Google Scholar 

  17. Lakshmikantham, V., Matrosov, V.M., Sivasundaram, S.: Vector Lyapunov Functions and Stability Analysis of Nonlinear Systems. Kluwer, Dordrecht, The Netherlands (1991)

    Book  MATH  Google Scholar 

  18. Šiljak, D.D.: Large-Scale Dynamic Systems: Stability and Structure. Elsevier, New York (1978)

    MATH  Google Scholar 

  19. Drici, Z.: New directions in the method of vector Lyapunov functions. J. Math. Anal. Appl. 184, 317–325 (1994)

  20. Matrosov, V.M.: Method of vector Lyapunov functions of interconnected systems with distributed parameters (survey) (in Russian). Avtomatikai Telemekhanika 33, 63–75 (1972)

    MathSciNet  Google Scholar 

  21. Lunze, J.: Stability analysis of large-scale systems composed of strongly coupled similar subsystems. Automatica 25, 561–570 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  22. Martynyuk, A.A.: Stability by Lyapunov’s Matrix Function Method with Applications. Marcel Dekker, New York (1998)

    MATH  Google Scholar 

  23. Ghaffari, A., Tomizuka, M., Soltan, R.A.: The stability of limit cycles in nonlinear systems. Nonlinear Dyn. 56(3), 269–275 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  24. Aniszewska, D., Rybaczuk, M.: Lyapunov type stability and Lyapunov exponent for exemplary multiplicative dynamical systems. Nonlinear Dyn. 54(4), 345–354 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  25. Hochlenert, D.: Nonlinear stability analysis of a disk brake model. Nonlinear Dyn. 58(1–2), 63–73 (2009)

    Article  MATH  Google Scholar 

  26. Long, X.-H., Balachandran, B.: Stability analysis for milling process. Nonlinear Dyn. 49(3), 349–359 (2007)

    Article  MATH  Google Scholar 

  27. Ibanez, C.A., Frias, O.G., Castanon, M.S.: Lyapunov-based controller for the inverted pendulum cart system. Nonlinear Dyn. 40(4), 367–374 (2005)

    Article  MATH  Google Scholar 

  28. Vorotnikov, V.I.: Partial Stability and Control. Birkhäuser, Boston, MA (1998)

    MATH  Google Scholar 

  29. Chellaboina, V., Haddad, W.M.: A unification between partial stability and stability theory for time-varying systems. Control Syst. Mag. 22(6), 66–75 (2002)

    Article  MathSciNet  Google Scholar 

  30. Khalil, H.K.: Nonlinear Syst. Prentice- Hall, Upper Saddle River, NJ (1996)

    Google Scholar 

  31. Coppel, W.A.: Stability and Asymptotic Behavior of Differential Equations. D. C. Heath, Boston, MA (1965)

    MATH  Google Scholar 

  32. Hahn, W.: Stability of Motion. Springer, Berlin (1967)

    Book  MATH  Google Scholar 

  33. Hale, J., LaSalle, J. P.: An invariance principle in the theory of stability. In: Mayaguez, P.R. (eds.) Proceedings of the International Symposium on Differential Equations and Dynamical Systems (1965)

  34. Nikitin, S.: Global Controllability and Stabilization of Nonlinear Systems. World Scientific Publishing Co., Pte. Ltd., Singapore (1994)

    MATH  Google Scholar 

  35. Sun, Z., Sam Ge, S.: Stability Theory of Switched Dynamical Systems. Springer, Berlin (2011)

    Book  MATH  Google Scholar 

  36. Liao, X., Yu, P.: Absolute Stability Systems of Nonlinear Control. Springer, Berlin (2008)

    Book  MATH  Google Scholar 

  37. Karafyllis, I., Jiang, Z.P.: Stability and Stabilization of Nonlinear Systems. Springer, Berlin (2011)

    Book  MATH  Google Scholar 

  38. Bacciotti, A., Rosier, L.: Liapunov Functions and Stability in Control Theory. Springer, Berlin (2005)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. H. Noori Skandari.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Noori Skandari, M.H. On the stability of a class of nonlinear control systems. Nonlinear Dyn 80, 1245–1256 (2015). https://doi.org/10.1007/s11071-015-1940-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-015-1940-5

Keywords

Navigation