Skip to main content
Log in

Static bifurcation and primary resonance analysis of a MEMS resonator actuated by two symmetrical electrodes

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper investigates the static and dynamic characteristics of a doubly clamped micro-beam-based resonator driven by two electrodes. The governing equation of motion is introduced here, which is essentially nonlinear due to its cubic stiffness and electrostatic force. In order to have a deep insight into the system, static bifurcation analysis of the Hamiltonian system is first carried out to obtain the bifurcation sets and phase portraits. Static and dynamic pull-in phenomena are distinguished from the viewpoint of energy. What follows the method of multiple scales is applied to determine the response and stability of the system for small vibration amplitude and AC voltage. Two important working conditions, where the origin of the system is a stable center or an unstable saddle point, are considered, respectively, for nonlinear dynamic analysis. Results show that the resonator can exhibit hardening-type or softening-type behavior in the neighborhood of different equilibrium positions. Besides, an attractive linear-like state may also exist under certain system parameters if the resonator vibrates around its stable origin. Whereafter, the corresponding parameter relationships are deduced and then numerically verified. Moreover, the variation of the equivalent natural frequency is analyzed as well. It is found that the later working condition may increase the equivalent natural frequency of the resonator. Finally, numerical simulations are provided to illustrate the effectiveness of the theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Younis, M.I., Nayfeh, A.H.: A study of the nonlinear response of a resonant microbeam to an electric actuation. Nonlinear Dyn. 31, 91–117 (2003)

    Article  MATH  Google Scholar 

  2. Lin, W.H., Zhao, Y.P.: Casimir effect on the pull-in parameters of nanometer switches. Microsyst. Technol. 11, 80–85 (2005)

    Article  Google Scholar 

  3. Leus, V., Elata, D.: On the dynamic response of electrostatic MEMS switches. J Microelectromech. Syst. 17, 236–243 (2008)

    Article  Google Scholar 

  4. Nayfeh, A.H., Ouakad, H.M., Najar, F., Choura, S., Abdel-Rahman, E.M.: Nonlinear dynamics of a resonant gas sensor. Nonlinear Dyn. 59, 607–618 (2010)

    Article  MATH  Google Scholar 

  5. Zaitsev, S., Shtempluck, O., Buks, E., Gottlieb, O.: Nonlinear damping in a micromechanical oscillator. Nonlinear Dyn. 67, 859–883 (2012)

    Article  MATH  Google Scholar 

  6. Park, K., Chen, Q.F., Lai, Y.C.: Energy enhancement and chaos control in microelectromechanical systems. Phys. Rev. E. 77, 02610 (2008)

    Google Scholar 

  7. Nayfeh, A.H., Younis, M.I., Abdel-Rahman, E.M.: Dynamic pull-in phenomenon in MEMS resonators. Nonlinear Dyn. 48, 153–163 (2007)

    Article  MATH  Google Scholar 

  8. Haghighi, H.S., Markazi, A.H.D.: Chaos prediction and control in MEMS resonators. Commun. Nonlinear Sci. Numer. Simul. 15, 3091–3099 (2010)

    Article  Google Scholar 

  9. Zhang, W.M., Yan, H., Peng, Z.K., Meng, G.: Electrostatic pull-in instability in MEMS/NEMS: a review. Sens. Actuators A Phys. 214, 187–218 (2014)

    Article  Google Scholar 

  10. Fang, Y.M., Li, P.: A new approach and model for accurate determination of the dynamic pull-in parameters of microbeams actuated by a step voltage. J. Micromech. Microeng. 23, 045010 (2013)

    Article  Google Scholar 

  11. Abdel-Rahman, E.M., Younis, M.I., Nayfeh, A.H.: Characterization of the mechanical behavior of an electrically actuated microbeam. J. Micromech. Microeng. 12, 759–766 (2002)

    Article  Google Scholar 

  12. Pamidighantam, S., Puers, R., Baert, K., Tilmans, H.A.C.: Pull-in voltage analysis of electrostatically actuated beam structures with fixed-fixed and fixed-free end conditions. J. Micromech. Microeng. 12, 458–464 (2002)

    Article  Google Scholar 

  13. Younis, M.I., Abdel-Rahman, E.M., Nayfeh, A.: A reduced-order model for electrically actuated microbeam-based MEMS. J. Microelectromech. Syst. 12, 672–680 (2003)

  14. Hu, Y.C., Chang, C.M., Huang, S.C.: Some design considerations on the electrostatically actuated microstructures. Sens. Actuators A Phys. 112, 155–161 (2004)

    Article  Google Scholar 

  15. Alsaleem, F.M., Younis, M.I., Ouakad, H.M.: On the nonlinear resonances and dynamic pull-in of electrostatically actuated resonators. J. Micromech. Microeng. 19, 045013 (2009)

    Article  Google Scholar 

  16. Alsaleem, F.M., Younis, M.I., Ruzziconi, L.: An experimental and theoretical investigation of dynamic pull-in in MEMS resonators actuated electrostatically. J. Microelectromech. Syst. 19, 794–806 (2010)

    Article  Google Scholar 

  17. Krylov, S.: Lyapunov exponents as a criterion for the dynamic pull-in instability of electrostatically actuated microstructures. Int. J. Non-Linear Mech. 42, 626–642 (2007)

    Article  Google Scholar 

  18. Lenci, S., Rega, G.: Control of pull-in dynamics in a nonlinear thermoelastic electrically actuated microbeam. J. Micromech. Microeng. 16, 390–401 (2006)

    Article  Google Scholar 

  19. Lakrad, F., Belhaq, M.: Suppression of pull-in instability in MEMS using a high-frequency actuation. Commun. Nonlinear Sci. Numer. Simul. 15, 3640–3646 (2010)

    Article  Google Scholar 

  20. Xie, W.C., Lee, H.P., Lim, S.P.: Nonlinear dynamic analysis of MEMS switches by nonlinear modal analysis. Nonlinear Dyn. 31, 243–256 (2003)

    Article  MATH  Google Scholar 

  21. Luo, A.C.J., Wang, F.Y.: Chaotic motion in a micro-electro-mechanical system with non-linearity from capacitors. Commun. Nonlinear Sci. Numer. Simul. 7, 31–49 (2002)

    Article  MATH  Google Scholar 

  22. Luo, A.C.J., Wang, F.Y.: Nonlinear dynamics of a micro-electro-mechanical system with time-varying capacitors. J. Vib. Acoust. 126, 77–83 (2004)

    Article  Google Scholar 

  23. Zhang, W.M., Tabata, O., Tsuchiya, T., Meng, G.: Noise-induced chaos in the electrostatically actuated MEMS resonators. Phys. Lett. A. 375, 2903–2910 (2011)

    Article  MATH  Google Scholar 

  24. Tusset, A.M., Balthazar, J.M., Bassinello, D.G., Pontes, B.R., Felix, J.L.P.: Statements on chaos control designs, including a fractional order dynamical system, applied to a “MEMS” comb-drive actuator. Nonlinear Dyn. 69, 1837–1857 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  25. Krylov, S., Harari, I., Cohen, Y.: Stabilization of electrostatically actuated microstructures using parametric excitation. J. Micromech. Microeng. 15, 1188–1204 (2005)

    Article  Google Scholar 

  26. Zhang, W.M., Meng, G.: Nonlinear dynamic analysis of electrostatically actuated resonant MEMS sensors under parametric excitation. IEEE Sens. J. 7, 370–380 (2007)

  27. Krylov, S.: Parametric excitation and stabilization of electrostatically actuated microstructures. Int. J. Multiscale Comput. 6, 563–584 (2009)

    Article  Google Scholar 

  28. Rhoads, J.F., Shaw, S.W., Turner, K.L., Baskaran, R.: Tunable microelectromechanical filters that exploit parametric resonance. J. Vib. Acoust. 127, 423–430 (2005)

    Article  Google Scholar 

  29. Rhoads, J.F., Shaw, S.W., Turner, K.L., Moehlis, J., DeMartini, B.E., Zhang, W.: Generalized parametric resonance in electrostatically actuated microelectromechanical oscillators. J. Sound Vib. 296, 797–829 (2006)

    Article  Google Scholar 

  30. Rhoads, J.F., Shaw, S.W., Turner, K.L.: The nonlinear response of resonant microbeam systems with purely-parametric electrostatic actuation. J. Micromech. Microeng. 16, 890–899 (2006)

    Article  Google Scholar 

  31. Gutschmidt, S., Gottlieb, O.: Nonlinear dynamic behavior of a microbeam array subject to parametric actuation at low, medium and large DC-voltages. Nonlinear Dyn. 67, 1–36 (2012)

    Article  MATH  Google Scholar 

  32. Ouakad, H.M., Younis, M.I.: The dynamic behavior of MEMS arch resonators actuated electrically. Int J. Non-Linear Mech. 45, 704–713 (2010)

    Article  Google Scholar 

  33. Younis, M.I., Ouakad, H.M., Alsaleem, F.M., Miles, R., Cui, W.: Nonlinear dynamics of MEMS arches under harmonic electrostatic actuation. J. Microelectromech. Syst. 19, 647–656 (2010)

    Article  Google Scholar 

  34. Krylov, S., Ilic, B.R., Lulinsky, S.: Bistability of curved microbeams actuated by fringing electrostatic fields. Nonlinear Dyn. 66, 403–426 (2011)

    Article  MathSciNet  Google Scholar 

  35. Ruzziconi, L., Lenci, S., Younis, M.I.: An imperfect microbeam under an axial load and electric excitation: nonlinear phenomena and dynamical integrity. Int. J. Bifurc. Chaos. 23, 1350026 (2013)

    Article  MathSciNet  Google Scholar 

  36. Ruzziconi, L., Younis, M.I., Lenci, S.: An efficient reduced-order model to investigate the behavior of an imperfect microbeam under axial load and electric excitation. J. Comput. Nonlinear Dyn. 8, 011014 (2013)

    Article  Google Scholar 

  37. Zamanzadeh, M., Rezazadeh, G., Jafarsadeghi-Poornaki, I., Shabani, R.: Static and dynamic stability modeling of a capacitive FGM micro-beam in presence of temperature changes. Appl. Math. Model. 37, 6964–6978 (2013)

    Article  MathSciNet  Google Scholar 

  38. Chen, C.P., Hu, H.T., Dai, L.M.: Nonlinear behavior and characterization of a piezoelectric laminated microbeam system. Commun. Nonlinear Sci. Numer. Simul. 18, 1304–1315 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  39. Seleim, A., Towfighian, S., Delande, E., Abdel-Rahman, E., Heppler, G.: Dynamics of a close-loop controlled MEMS resonator. Nonlinear Dyn. 69, 615–633 (2012)

    Article  Google Scholar 

  40. Towfighian, S., Heppler, G., Abdel-Rahaman, E.: Low-voltage closed loop MEMS actuators. Nonlinear Dyn. 69, 565–575 (2012)

  41. Shao, S., Masri, K.M., Younis, M.I.: The effect of time-delayed feedback controller on an electrically actuated resonator. Nonlinear Dyn. 74, 257–270 (2013)

  42. Yau, H.T., Wang, C.C., Hsieh, C.T., Cho, C.C.: Nonlinear analysis and control of the uncertain micro-electro-mechanical system by using a fuzzy sliding mode control design. Comput. Math. Appl. 61, 1912–1916 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  43. Aghababa, M.P.: Chaos in a fractional-order micro-electro-mechanical resonator and its suppression. Chin. Phys. B. 21, 100505 (2012)

    Article  Google Scholar 

  44. Song, Z.H., Sun, K.B.: Nonlinear and chaos control of a micro-electro-mechanical system by using second-order fast terminal sliding mode control. Commun. Nonlinear Sci. Numer. Simul. 18, 2540–2548 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  45. Najar, F., Nayfeh, A.H., Abdel-Rahman, E.M., Choura, S., El-Borgi, S.: Dynamics and global stability of beam-based electrostatic microactuators. J. Vib. Control 16, 721–748 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  46. Elata, D., Abu-Salih, S.: Analysis of a novel method for measuring residual stress in micro-systems. J. Micromech. Microeng. 15, 921–927 (2005)

    Article  Google Scholar 

  47. Mobki, H., Rezazadeh, G., Sadeghi, M., Vakili-Tahami, F., Seyyed-Fakhrabadi, M.-M.: A comprehensive study of stability in an electro-statically actuated micro-beam. Int. J. Non-Linear Mech. 48, 78–85 (2013)

    Article  Google Scholar 

  48. Miandoab, M.E., Pishkenari, H.N., Yousefi-Koma, A., Tajaddodianfar, F.: Chaos prediction in MEMS–NEMS resonators. Int. J. Eng. Sci. 82, 74–83 (2014)

    Article  Google Scholar 

  49. Mestrom, R.M.C., Fey, R.H.B., van Beek, J.T.M., Phan, K.L., Nijmeijer, H.: Modelling the dynamics of a MEMS resonator: simulations and experiments. Sens. Actuators A Phys. 142, 306–315 (2008)

    Article  Google Scholar 

  50. Mestrom, R.M.C., Fey, R.H.B., Phan, K.L., Nijmeijer, H.: Simulations and experiments of hardening and softening resonances in a clamped–clamped beam MEMS resonator. Sens. Actuators A Phys. 162, 225–234 (2010)

    Article  Google Scholar 

  51. Kaajakari, V., Mattila, T., Oja, A., Seppa, H.: Nonlinear limits for single-crystal silicon microresonators. J. Microelectromech. Syst. 13, 715–724 (2004)

    Article  Google Scholar 

  52. Nayfeh, A.H., Mook, D.T.: Nonlinear Oscillations. Wiley, New York (2008)

    Google Scholar 

  53. Bumkyoo, C., Lovell, E.G.: Improved analysis of microbeams under mechanical and electrostatic loads. J. Micromech. Microeng. 7, 24–29 (1997)

    Article  Google Scholar 

Download references

Acknowledgments

The work was supported by the National Natural Science Foundation of China (Grant Nos. 11372210, 11102127), Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20120032110010), Tianjin Research Program of Application Foundation and Advanced Technology (Grant Nos. 12JCYBJC12500, 12JCZDJC28000) and Key Projects in the Tianjin Science and Technology Pillar Program (Grant No. 14ZCZDGX00002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Wang.

Appendix

Appendix

The proof of \(X_3 >1\) when \(\Delta >0\) can be summarized as follows.

The derivative of \(X_3 \) with respect to \(\gamma \) can be written as

$$\begin{aligned} \frac{\hbox {d}X_3 }{\hbox {d}\gamma }=\frac{\root 3 \of {\eta _1 +6\sqrt{3}\alpha \eta _2 }-\root 3 \of {\eta _1 -6\sqrt{3}\alpha \eta _2 }}{\sqrt{3}\eta _2 } \end{aligned}$$
(35)

where \(\eta _1 =-(1+\alpha )^{3}+54\alpha ^{2}\gamma \) and \(\eta _2 =\sqrt{-[(1+\alpha )^{3}-27\alpha ^{2}\gamma )]\gamma }\).

As \(\gamma >{(1+\alpha )^{3}}/{(27\alpha ^{2})}\ge 0.25\), it is clear that \(\eta _1 >(1+\alpha )^{3}>0\) and \(\eta _2 >0\), leading to \(\frac{\hbox {d}X_3 }{\hbox {d}\gamma }>0\). According to the continuity of \(X_3 \) to \(\gamma \) as \(\gamma \ge {(1+\alpha )^{3}}/{(27\alpha ^{2})}\), it is clear that \(X_3 >\left. {X_3 } \right| _{\gamma =0.25} \), where the expression of \(\left. {X_3 } \right| _{\gamma =0.25} \) can be given by

$$\begin{aligned}&\left. {X_3 } \right| _{\gamma =0.25}\nonumber \\&\quad {=}\frac{\alpha \left[ {4+2^{2/3}\left( {B_1 {+}iB_2 } \right) ^{1/3}+2^{2/3}\left( {B_1 {-}iB_2 } \right) ^{1/3}} \right] {-}2}{6\alpha }\nonumber \\ \end{aligned}$$
(36)

where \(B_1 =\frac{21\alpha ^{2}-6\alpha -2\alpha ^{3}-2}{\alpha ^{3}}\) and \(B_2 =3\sqrt{3}\sqrt{\frac{(\alpha -2)^{2}(1+4\alpha )}{\alpha ^{4}}}\).

If \(\alpha =2,\,B_2 =0\) and \(\left. {X_3 } \right| _{\gamma =0.25} =\frac{3}{2}\), else \(\alpha \ne 2,\,\left. {X_3 } \right| _{\gamma =0.25} \) can be rewritten as

$$\begin{aligned} \left. {X_3 } \right| _{\gamma =0.25} =\frac{4\alpha +4(1+\alpha )\cos (\varphi )-2}{6\alpha } \end{aligned}$$
(37)

where \(\varphi =\frac{1}{3}\arccos (\frac{B_1 }{\sqrt{B_1^2 +B_2^2 }}),\,\,0\le \varphi <\frac{\pi }{3}\).

The property \(\frac{1}{2}<\cos (\varphi )\le 1\) leads to \(1<\left. {X_3 } \right| _{\gamma =0.25} \le \frac{4\alpha +1}{3\alpha }\). It is obvious that \(X_3 >1\).\(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, J., Zhang, Q. & Wang, W. Static bifurcation and primary resonance analysis of a MEMS resonator actuated by two symmetrical electrodes. Nonlinear Dyn 80, 1585–1599 (2015). https://doi.org/10.1007/s11071-015-1964-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-015-1964-x

Keywords

Navigation