Skip to main content
Log in

Isogeometric rotation-free analysis of planar extensible-elastica for static and dynamic applications

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Finite deformations of planar slender beams for which shear strain can be neglected are described by the extensible- elastica model, where the strain-displacement relation is geometrically exact and the Biot stress–strain relation is linear. However, if the formulation is expressed in terms of displacements without rotation, the kinematics are described by a partial differential equation involving a fourth-order spatial operator, which cannot be approximated by the classical \({\mathcal {C}}^0\)-continuous FE method in the standard Galerkin framework. In this work, we propose the spatial approximation of such high-order PDE by means of NURBS-based isogeometric analysis (IGA) which allows the use of globally high-order continuous basis functions. The employed IGA approach possesses three advantages: first, it facilitates the encapsulation of the exact geometric representation of the beams in the spatial approximation with fewer discrete points, especially useful for curved structures; second, it allows the discretization of high-order spatial operators; and third, it provides an efficient numerical solution of the discrete problem by using a limited number of degrees of freedom since the employed standard Galerkin formulation does not require rotational degrees of freedom. Yet this approach has not been directly compared to appropriate analytical solutions. To this end, we compare and validate numerical results from FE with the closed-form solutions for a set of static beam problems, including a newly derived solution for an initially curved beam, based on the extensible-elastica theory, by estimating the convergence orders of the errors. We also highlight the advantages of this formulation with the numerical solution of three dynamic problems: the swinging of a pinned beam, the propagation of solitons (nonlinear waves) in post-buckled beams, and snap-through buckling of a pinned beam that is axially buckled before transverse loading.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Notes

  1. \(\varvec{r}''^T \varTheta \varvec{r}^{'}\) is sometimes expressed as a norm of a cross-product \(\Vert \varvec{r}^{'} \times \varvec{r}''\Vert _2\) (e.g., [18]); however, in this convention, the sign is lost.

References

  1. Reissner, E.: On one-dimensional finite-strain beam theory: the plane problem. Z. Angew. Math. Phys 23(5), 795–804 (1972)

    Article  MATH  Google Scholar 

  2. Reissner, E.: On one-dimensional large-displacement finite-strain beam theory. Stud. Appl. Math. 52(2), 87–95 (1973)

    MATH  Google Scholar 

  3. Simo, J.C.: A finite strain beam formulation. The three-dimensional dynamic problem. Part I. Comput. Methods Appl. Mech. Eng. 49(1), 55–70 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  4. Simo, J.C., Vu-Quoc, L.: A three-dimensional finite-strain rod model. Part II: Computational aspects. Comput. Methods Appl. Mech. Eng. 58(1), 79–116 (1986)

    Article  MATH  Google Scholar 

  5. Wriggers, P.: Nonlinear Finite Element Methods. Springer, New York (2008)

    MATH  Google Scholar 

  6. Ghosh, S., Roy, D.: A frame-invariant scheme for the geometrically exact beam using rotation vector parametrization. Comput. Mech. 44(1), 103–118 (2009)

    Article  MATH  Google Scholar 

  7. Santos, H.A.F.A., Pimenta, P.M., Moitinho de Almeida, J.P.: Hybrid and multi-field variational principles for geometrically exact three-dimensional beams. Int. J. Non-Linear Mech. 45(8), 809–820 (2010)

    Article  Google Scholar 

  8. Češarek, P., Saje, M., Zupan, D.: Kinematically exact curved and twisted strain-based beam. Int. J. Solids Struct. 49(13), 1802–1817 (2012)

    Article  Google Scholar 

  9. Romero, I.: A comparison of finite elements for nonlinear beams: the absolute nodal coordinate and geometrically exact formulations. Multibody Syst. Dyn. 20(1), 51–68 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  10. Shabana, A.A., Yakoub, R.Y.: Three dimensional absolute nodal coordinate formulation for beam elements: theory. J. Mech. Des. 123(4), 606 (2001)

    Article  Google Scholar 

  11. Yakoub, R.Y., Shabana, A.A.: Three dimensional absolute nodal coordinate formulation for beam elements: implementation and applications. J. Mech. Des. 123(4), 614 (2001)

    Article  Google Scholar 

  12. Gerstmayr, J., Shabana, A.A.: Analysis of thin beams and cables using the absolute nodal co-ordinate formulation. Nonlinear Dyn. 45(1–2), 109–130 (2006)

    Article  MATH  Google Scholar 

  13. Gerstmayr, J., Matikainen, M.K., Mikkola, A.M.: A geometrically exact beam element based on the absolute nodal coordinate formulation. Multibody Syst. Dyn. 20(4), 359–384 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  14. Magnusson, A., Ristinmaa, M., Ljung, C.: Behaviour of the extensible elastica solution. Int. J. Solids Struct. 38(46–47), 8441–8457 (2001)

    Article  MATH  Google Scholar 

  15. Reddy, J.N.: An Introduction to Nonlinear Finite Element Analysis. Oxford University Press, Oxford (2004)

    Book  MATH  Google Scholar 

  16. Saje, M.: A variational principle for finite planar deformation of straight slender elastic beams. Int. J. Solids Struct. 26(8), 887–900 (1990)

    Article  MATH  Google Scholar 

  17. Zhao, Z., Ren, G.: A quaternion-based formulation of Euler–Bernoulli beam without singularity. Nonlinear Dyn. 67(3), 1825–1835 (2011)

    Article  MathSciNet  Google Scholar 

  18. Zhang, R., Zhong, H.: Weak form quadrature element analysis of planar slender beams based on geometrically exact beam theory. Arch. Appl. Mech. 83(9), 1309–1325 (2013)

    Article  MATH  Google Scholar 

  19. Cottrell, J.A., Hughes, T.J.R., Bazilevs, Y.: Isogeometric Analysis: Toward Integration of CAD and FEA. Wiley, New York (2009)

    Book  Google Scholar 

  20. Dedè, L., Santos, H.A.F.A.: B-spline goal-oriented error estimators for geometrically nonlinear rods. Comput. Mech. 49(1), 35–52 (2011)

    Article  Google Scholar 

  21. Cottrell, J., Reali, A., Bazilevs, Y., Hughes, T.: Isogeometric analysis of structural vibrations. Comput. Methods Appl. Mech. Eng. 195(41–43), 5257–5296 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  22. Weeger, O., Wever, U., Simeon, B.: Isogeometric analysis of nonlinear Euler–Bernoulli beam vibrations. Nonlinear Dyn. 72(4), 813–835 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  23. Raknes, S.B., Deng, X., Bazilevs, Y., Benson, D.J., Mathisen, K.M., Kvamsdal, T.: Isogeometric rotation-free bending-stabilized cables: statics, dynamics, bending strips and coupling with shells. Comput. Methods Appl. Mech. Eng. 263, 127–143 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  24. Nagy, A.P., Abdalla, M.M., Gürdal, Z.: Isogeometric sizing and shape optimisation of beam structures. Comput. Methods Appl. Mech. Eng. 199(17), 1216–1230 (2010)

    Article  MATH  Google Scholar 

  25. Beirão da Veiga, L., Lovadina, C., Reali, A.: Avoiding shear locking for the Timoshenko beam problem via isogeometric collocation methods. Comput. Methods Appl. Mech. Eng. 241, 38–51 (2012)

    Article  Google Scholar 

  26. Bouclier, R., Elguedj, T., Combescure, A.: Locking free isogeometric formulations of curved thick beams. Comput. Methods Appl. Mech. Eng. 245–246, 144–162 (2012)

    Article  MathSciNet  Google Scholar 

  27. Li, X., Zhang, J., Zheng, Y.: NURBS-based isogeometric analysis of beams and plates using high order shear deformation theory. Math. Probl. Eng. 1–9, 2013 (2013)

    Google Scholar 

  28. Greco, L., Cuomo, M.: B-Spline interpolation of Kirchhoff-Love space rods. Comput. Methods Appl. Mech. Eng. 256, 251–269 (2013)

    Article  MathSciNet  Google Scholar 

  29. Greco, L., Cuomo, M.: An implicit G1 multi patch B-spline interpolation for Kirchhoff–Love space rod. Comput. Methods Appl. Mech. Eng. 269, 173–197 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  30. Kiendl, J., Bletzinger, K.-U., Linhard, J., Wüchner, R.: Isogeometric shell analysis with Kirchhoff–Love elements. Comput. Methods Appl. Mech. Eng. 198(49), 3902–3914 (2009)

    Article  MATH  Google Scholar 

  31. Kiendl, J., Bazilevs, Y., Hsu, M.-C., Wüchner, R., Bletzinger, K.-U.: The bending strip method for isogeometric analysis of Kirchhoff–Love shell structures comprised of multiple patches. Comput. Methods Appl. Mech. Eng. 199(37–40), 2403–2416 (2010)

    Article  MATH  Google Scholar 

  32. Benson, D.J., Bazilevs, Y., Hsu, M.-C., Hughes, T.J.R.: A large deformation, rotation-free, isogeometric shell. Comput. Methods Appl. Mech. Eng. 200(13), 1367–1378 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  33. Benson, D.J., Bazilevs, Y., Hsu, M.-C., Hughes, T.J.R.: Isogeometric shell analysis: the Reissner–Mindlin shell. Comput. Methods Appl. Mech. Eng. 199(5), 276–289 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  34. Benson, D.J., Hartmann, S., Bazilevs, Y., Hsu, M.-C., Hughes, T.J.R.: Blended isogeometric shells. Comput. Methods Appl. Mech. Eng. 255, 133–146 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  35. Echter, R., Oesterle, B., Bischoff, M.: A hierarchic family of isogeometric shell finite elements. Comput. Methods Appl. Mech. Eng. 254, 170–180 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  36. Irschik, H., Gerstmayr, J.: A continuum mechanics based derivation of Reissner’s large-displacement finite-strain beam theory: the case of plane deformations of originally straight Bernoulli–Euler beams. Acta Mech. 206(1–2), 1–21 (2008)

    Google Scholar 

  37. Humer, A., Irschik, H.: Large deformation and stability of an extensible elastica with an unknown length. Int. J. Solids Struct. 48(9), 1301–1310 (2011)

    Article  MATH  Google Scholar 

  38. Humer, A.: Exact solutions for the buckling and postbuckling of shear-deformable beams. Acta Mech. 224(7), 1493–1525 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  39. Humer, A.: Elliptic integral solution of the extensible elastica with a variable length under a concentrated force. Acta Mech. 222(3–4), 209–223 (2011)

    Article  MATH  Google Scholar 

  40. Chen, J., Tsao, H.: Static snapping load of a hinged extensible elastica. Appl. Math. Model. 37(18–19), 8401–8408 (2013)

    Article  MathSciNet  Google Scholar 

  41. Chen, J., Tsao, H.: Dynamic snapping of a hinged extensible elastica under a step load. Int. J. Non-Linear Mech. 59(1), 9–15 (2014)

    Article  MathSciNet  Google Scholar 

  42. Pulngern, T., Sudsanguan, T., Athisakul, C., Chucheepsakul, S.: Elastica of a variable-arc-length circular curved beam subjected to an end follower force. Int. J. Non-Linear Mech. 49, 129–136 (2013)

    Article  Google Scholar 

  43. González, C., LLorca, J.: Stiffness of a curved beam subjected to axial load and large displacements. Int. J. Solids Struct. 42(5—-6), 1537–1545 (2005)

    Article  MATH  Google Scholar 

  44. Bazilevs, Y., Beirão da Veiga, L., Cottrell, J.A., Hughes, T.J.R., Sangalli, G.: Isogeometric analysis: approximation, stability and error estimates for h-refined meshes. Math. Models Methods Appl. Sci. 16(7), 1031–1090 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  45. da Veiga, L.B., Buffa, A., Rivas, J., Sangalli, G.: Some estimates for hpk-refinement in isogeometric analysis. Num. Math. 118(2), 271–305 (2011)

    Article  MATH  Google Scholar 

  46. Tagliabue, A., Dedè, L., Quarteroni, A.: Isogeometric analysis and error estimates for high order partial differential equations in fluid dynamics. Comput. Fluids 102, 277–303 (2014)

    Article  MathSciNet  Google Scholar 

  47. Auricchio, F., da Veiga, L.B., Buffa, A., Lovadina, C., Reali, A., Sangalli, G.: A fully locking-free isogeometric approach for plane linear elasticity problems: a stream function formulation. Comput. Methods Appl. Mech. Eng. 197(1—-4), 160–172 (2007)

    Article  MATH  Google Scholar 

  48. Ishaquddin, M.D., Raveendranath, P., Reddy, J.N.: Coupled polynomial field approach for elimination of flexure and torsion locking phenomena in the timoshenko and Euler–Bernoulli curved beam elements. Finite Elem. Anal. Des. 65, 17–31 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  49. Ibrahimbegović, A.: On finite element implementation of geometrically nonlinear Reissner’s beam theory: three-dimensional curved beam elements. Comput. Methods Appl. Mech. Eng. 122(1), 11–26 (1995)

  50. Maurin, F., Spadoni, A.: Low-frequency wave propagation in post-buckled structures. Wave Motion 51(2), 323–334 (2014)

    Article  MathSciNet  Google Scholar 

  51. Maurin, F., Spadoni, A.: Wave dispersion in periodic post-buckled structures. J. Sound Vib. 333(19), 4562–4578 (2014)

    Article  Google Scholar 

  52. Piegl, L.A., Tiller, W.: The Nurbs Book. Springer, New York (1997)

    Book  Google Scholar 

  53. Hughes, T.J.R., Reali, A., Sangalli, G.: Efficient quadrature for NURBS-based isogeometric analysis. Comput. Methods Appl. Mech. Eng. 199(5–8), 301–313 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  54. Chung, J., Hulbert, G.M.: A time integration algorithm for structural dynamics with improved numerical dissipation: the generalized-\(\alpha \) method. J. Appl. Mech. 60(2), 371 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  55. Hughes, T.J.R.: The Finite Element Method: Linear Static and Dynamic Finite Element Analysis. Courier Dover Publications, New Jersey (1987)

    MATH  Google Scholar 

  56. Espath, L., Braun, A., Awruch, A.: Energy conserving and numerical stability in non linear dynamic using isogeometric analysis. Mec. Comput. XXXII(2), 33–62 (2013)

    Google Scholar 

  57. Beléndez, A., Hernández, A., Márquez, A., Beléndez, T., Neipp, C.: Analytical approximations for the period of a nonlinear pendulum. Eur. J. Phys. 27(3), 539–551 (2006)

    Article  Google Scholar 

  58. Remoissenet, M.: Waves called Solitons: Concepts and Experiments. Advanced Texts in Physics. Springer, New York (1999)

    Book  Google Scholar 

  59. Wriggers, P., Nackenhorst, U.: Analysis and Simulation of Contact Problems. Springer, London (2006)

    Book  MATH  Google Scholar 

  60. Nayfeh, A., La Carbonara, W., Char-Ming, C.: Nonlinear normal modes of buckled beams: three-to-one and one-to-one internal resonances. Nonlinear Dyn. 18(3), 253–273 (1999)

    Article  MATH  Google Scholar 

  61. Schweizerhof, K., Wriggers, P.: Consistent linearization for path following methods in nonlinear fe analysis. Comput. Methods Appl. Mech. Eng. 59(3), 261–279 (1986)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessandro Spadoni.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maurin, F., Dedè, L. & Spadoni, A. Isogeometric rotation-free analysis of planar extensible-elastica for static and dynamic applications. Nonlinear Dyn 81, 77–96 (2015). https://doi.org/10.1007/s11071-015-1974-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-015-1974-8

Keywords

Navigation